Metamath Proof Explorer


Theorem mapdpglem27

Description: Lemma for mapdpg . Baer p. 45 line 16: "v(x'-y'') = x'-y'" (with equality swapped). (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
mapdpglem26.a A=ScalarU
mapdpglem26.b B=BaseA
mapdpglem26.t ·˙=C
mapdpglem26.o O=0A
Assertion mapdpglem27 φvBOGRh=v·˙GRi

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
19 mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
20 mapdpglem26.a A=ScalarU
21 mapdpglem26.b B=BaseA
22 mapdpglem26.t ·˙=C
23 mapdpglem26.o O=0A
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mapdpglem25 φJh=JiJGRh=JGRi
25 24 simprd φJGRh=JGRi
26 eqid ScalarC=ScalarC
27 eqid BaseScalarC=BaseScalarC
28 eqid 0ScalarC=0ScalarC
29 1 8 12 lcdlvec φCLVec
30 1 8 12 lcdlmod φCLMod
31 18 simpld φhF
32 9 10 lmodvsubcl CLModGFhFGRhF
33 30 15 31 32 syl3anc φGRhF
34 19 simpld φiF
35 9 10 lmodvsubcl CLModGFiFGRiF
36 30 15 34 35 syl3anc φGRiF
37 9 26 27 28 22 11 29 33 36 lspsneq φJGRh=JGRivBaseScalarC0ScalarCGRh=v·˙GRi
38 1 3 20 21 8 26 27 12 lcdsbase φBaseScalarC=B
39 1 3 20 23 8 26 28 12 lcd0 φ0ScalarC=O
40 39 sneqd φ0ScalarC=O
41 38 40 difeq12d φBaseScalarC0ScalarC=BO
42 41 rexeqdv φvBaseScalarC0ScalarCGRh=v·˙GRivBOGRh=v·˙GRi
43 37 42 bitrd φJGRh=JGRivBOGRh=v·˙GRi
44 25 43 mpbid φvBOGRh=v·˙GRi