Metamath Proof Explorer


Theorem mapdspex

Description: The map of a span equals the dual span of some vector (functional). (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses mapdspex.h H=LHypK
mapdspex.m M=mapdKW
mapdspex.u U=DVecHKW
mapdspex.v V=BaseU
mapdspex.n N=LSpanU
mapdspex.c C=LCDualKW
mapdspex.b B=BaseC
mapdspex.j J=LSpanC
mapdspex.k φKHLWH
mapdspex.x φXV
Assertion mapdspex φgBMNX=Jg

Proof

Step Hyp Ref Expression
1 mapdspex.h H=LHypK
2 mapdspex.m M=mapdKW
3 mapdspex.u U=DVecHKW
4 mapdspex.v V=BaseU
5 mapdspex.n N=LSpanU
6 mapdspex.c C=LCDualKW
7 mapdspex.b B=BaseC
8 mapdspex.j J=LSpanC
9 mapdspex.k φKHLWH
10 mapdspex.x φXV
11 1 6 9 lcdlmod φCLMod
12 11 adantr φNXLSAtomsUCLMod
13 eqid LSAtomsU=LSAtomsU
14 eqid LSAtomsC=LSAtomsC
15 9 adantr φNXLSAtomsUKHLWH
16 simpr φNXLSAtomsUNXLSAtomsU
17 1 2 3 13 6 14 15 16 mapdat φNXLSAtomsUMNXLSAtomsC
18 7 8 14 islsati CLModMNXLSAtomsCgBMNX=Jg
19 12 17 18 syl2anc φNXLSAtomsUgBMNX=Jg
20 eqid 0C=0C
21 1 6 7 20 9 lcd0vcl φ0CB
22 21 adantr φNX=0U0CB
23 fveq2 NX=0UMNX=M0U
24 eqid 0U=0U
25 1 2 3 24 6 20 9 mapd0 φM0U=0C
26 20 8 lspsn0 CLModJ0C=0C
27 11 26 syl φJ0C=0C
28 25 27 eqtr4d φM0U=J0C
29 23 28 sylan9eqr φNX=0UMNX=J0C
30 sneq g=0Cg=0C
31 30 fveq2d g=0CJg=J0C
32 31 rspceeqv 0CBMNX=J0CgBMNX=Jg
33 22 29 32 syl2anc φNX=0UgBMNX=Jg
34 1 3 9 dvhlmod φULMod
35 4 5 24 13 34 10 lsator0sp φNXLSAtomsUNX=0U
36 19 33 35 mpjaodan φgBMNX=Jg