Metamath Proof Explorer


Theorem mdetrlin2

Description: The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses mdetrlin2.d D=NmaDetR
mdetrlin2.k K=BaseR
mdetrlin2.p +˙=+R
mdetrlin2.r φRCRing
mdetrlin2.n φNFin
mdetrlin2.x φiNjNXK
mdetrlin2.y φiNjNYK
mdetrlin2.z φiNjNZK
mdetrlin2.i φIN
Assertion mdetrlin2 φDiN,jNifi=IX+˙YZ=DiN,jNifi=IXZ+˙DiN,jNifi=IYZ

Proof

Step Hyp Ref Expression
1 mdetrlin2.d D=NmaDetR
2 mdetrlin2.k K=BaseR
3 mdetrlin2.p +˙=+R
4 mdetrlin2.r φRCRing
5 mdetrlin2.n φNFin
6 mdetrlin2.x φiNjNXK
7 mdetrlin2.y φiNjNYK
8 mdetrlin2.z φiNjNZK
9 mdetrlin2.i φIN
10 eqid NMatR=NMatR
11 eqid BaseNMatR=BaseNMatR
12 crngring RCRingRRing
13 4 12 syl φRRing
14 13 3ad2ant1 φiNjNRRing
15 2 3 ringacl RRingXKYKX+˙YK
16 14 6 7 15 syl3anc φiNjNX+˙YK
17 16 8 ifcld φiNjNifi=IX+˙YZK
18 10 2 11 5 4 17 matbas2d φiN,jNifi=IX+˙YZBaseNMatR
19 6 8 ifcld φiNjNifi=IXZK
20 10 2 11 5 4 19 matbas2d φiN,jNifi=IXZBaseNMatR
21 7 8 ifcld φiNjNifi=IYZK
22 10 2 11 5 4 21 matbas2d φiN,jNifi=IYZBaseNMatR
23 snex IV
24 23 a1i φIV
25 9 snssd φIN
26 25 3ad2ant1 φiIjNIN
27 simp2 φiIjNiI
28 26 27 sseldd φiIjNiN
29 28 6 syld3an2 φiIjNXK
30 28 7 syld3an2 φiIjNYK
31 eqidd φiI,jNX=iI,jNX
32 eqidd φiI,jNY=iI,jNY
33 24 5 29 30 31 32 offval22 φiI,jNX+˙fiI,jNY=iI,jNX+˙Y
34 33 eqcomd φiI,jNX+˙Y=iI,jNX+˙fiI,jNY
35 mposnif iI,jNifi=IX+˙YZ=iI,jNX+˙Y
36 mposnif iI,jNifi=IXZ=iI,jNX
37 mposnif iI,jNifi=IYZ=iI,jNY
38 36 37 oveq12i iI,jNifi=IXZ+˙fiI,jNifi=IYZ=iI,jNX+˙fiI,jNY
39 34 35 38 3eqtr4g φiI,jNifi=IX+˙YZ=iI,jNifi=IXZ+˙fiI,jNifi=IYZ
40 ssid NN
41 resmpo INNNiN,jNifi=IX+˙YZI×N=iI,jNifi=IX+˙YZ
42 25 40 41 sylancl φiN,jNifi=IX+˙YZI×N=iI,jNifi=IX+˙YZ
43 resmpo INNNiN,jNifi=IXZI×N=iI,jNifi=IXZ
44 25 40 43 sylancl φiN,jNifi=IXZI×N=iI,jNifi=IXZ
45 resmpo INNNiN,jNifi=IYZI×N=iI,jNifi=IYZ
46 25 40 45 sylancl φiN,jNifi=IYZI×N=iI,jNifi=IYZ
47 44 46 oveq12d φiN,jNifi=IXZI×N+˙fiN,jNifi=IYZI×N=iI,jNifi=IXZ+˙fiI,jNifi=IYZ
48 39 42 47 3eqtr4d φiN,jNifi=IX+˙YZI×N=iN,jNifi=IXZI×N+˙fiN,jNifi=IYZI×N
49 eldifsni iNIiI
50 49 neneqd iNI¬i=I
51 iffalse ¬i=Iifi=IX+˙YZ=Z
52 iffalse ¬i=Iifi=IXZ=Z
53 51 52 eqtr4d ¬i=Iifi=IX+˙YZ=ifi=IXZ
54 50 53 syl iNIifi=IX+˙YZ=ifi=IXZ
55 54 3ad2ant2 φiNIjNifi=IX+˙YZ=ifi=IXZ
56 55 mpoeq3dva φiNI,jNifi=IX+˙YZ=iNI,jNifi=IXZ
57 difss NIN
58 resmpo NINNNiN,jNifi=IX+˙YZNI×N=iNI,jNifi=IX+˙YZ
59 57 40 58 mp2an iN,jNifi=IX+˙YZNI×N=iNI,jNifi=IX+˙YZ
60 resmpo NINNNiN,jNifi=IXZNI×N=iNI,jNifi=IXZ
61 57 40 60 mp2an iN,jNifi=IXZNI×N=iNI,jNifi=IXZ
62 56 59 61 3eqtr4g φiN,jNifi=IX+˙YZNI×N=iN,jNifi=IXZNI×N
63 iffalse ¬i=Iifi=IYZ=Z
64 51 63 eqtr4d ¬i=Iifi=IX+˙YZ=ifi=IYZ
65 50 64 syl iNIifi=IX+˙YZ=ifi=IYZ
66 65 3ad2ant2 φiNIjNifi=IX+˙YZ=ifi=IYZ
67 66 mpoeq3dva φiNI,jNifi=IX+˙YZ=iNI,jNifi=IYZ
68 resmpo NINNNiN,jNifi=IYZNI×N=iNI,jNifi=IYZ
69 57 40 68 mp2an iN,jNifi=IYZNI×N=iNI,jNifi=IYZ
70 67 59 69 3eqtr4g φiN,jNifi=IX+˙YZNI×N=iN,jNifi=IYZNI×N
71 1 10 11 3 4 18 20 22 9 48 62 70 mdetrlin φDiN,jNifi=IX+˙YZ=DiN,jNifi=IXZ+˙DiN,jNifi=IYZ