Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Cover relation, atoms, exchange axiom, and modular symmetry
Covers relation; modular pairs
mdslmd1lem2
Next ⟩
mdslmd1lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
mdslmd1lem2
Description:
Lemma for
mdslmd1i
.
(Contributed by
NM
, 29-Apr-2006)
(New usage is discouraged.)
Ref
Expression
Hypotheses
mdslmd.1
⊢
A
∈
C
ℋ
mdslmd.2
⊢
B
∈
C
ℋ
mdslmd.3
⊢
C
∈
C
ℋ
mdslmd.4
⊢
D
∈
C
ℋ
mdslmd1lem.5
⊢
R
∈
C
ℋ
Assertion
mdslmd1lem2
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
∩
B
⊆
D
∩
B
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
→
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
C
∩
D
Proof
Step
Hyp
Ref
Expression
1
mdslmd.1
⊢
A
∈
C
ℋ
2
mdslmd.2
⊢
B
∈
C
ℋ
3
mdslmd.3
⊢
C
∈
C
ℋ
4
mdslmd.4
⊢
D
∈
C
ℋ
5
mdslmd1lem.5
⊢
R
∈
C
ℋ
6
ssrin
⊢
R
⊆
D
→
R
∩
B
⊆
D
∩
B
7
6
adantl
⊢
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∩
B
⊆
D
∩
B
8
7
imim1i
⊢
R
∩
B
⊆
D
∩
B
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
→
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
9
simpllr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
B
𝑀
ℋ
*
A
10
3
5
chub2i
⊢
C
⊆
R
∨
ℋ
C
11
sstr
⊢
A
⊆
C
∧
C
⊆
R
∨
ℋ
C
→
A
⊆
R
∨
ℋ
C
12
10
11
mpan2
⊢
A
⊆
C
→
A
⊆
R
∨
ℋ
C
13
12
ad2antrr
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
A
⊆
R
∨
ℋ
C
14
13
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
R
∨
ℋ
C
15
simplr
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
A
⊆
D
16
15
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
D
17
14
16
ssind
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
R
∨
ℋ
C
∩
D
18
ssin
⊢
A
⊆
C
∧
A
⊆
D
↔
A
⊆
C
∩
D
19
3
4
chincli
⊢
C
∩
D
∈
C
ℋ
20
19
5
chub2i
⊢
C
∩
D
⊆
R
∨
ℋ
C
∩
D
21
sstr
⊢
A
⊆
C
∩
D
∧
C
∩
D
⊆
R
∨
ℋ
C
∩
D
→
A
⊆
R
∨
ℋ
C
∩
D
22
20
21
mpan2
⊢
A
⊆
C
∩
D
→
A
⊆
R
∨
ℋ
C
∩
D
23
18
22
sylbi
⊢
A
⊆
C
∧
A
⊆
D
→
A
⊆
R
∨
ℋ
C
∩
D
24
23
adantr
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
A
⊆
R
∨
ℋ
C
∩
D
25
24
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
R
∨
ℋ
C
∩
D
26
17
25
ssind
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
R
∨
ℋ
C
∩
D
∩
R
∨
ℋ
C
∩
D
27
inss2
⊢
R
∨
ℋ
C
∩
D
⊆
D
28
sstr
⊢
R
∨
ℋ
C
∩
D
⊆
D
∧
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
29
27
28
mpan
⊢
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
30
29
ad2antll
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
31
30
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
32
sstr
⊢
R
⊆
D
∧
D
⊆
A
∨
ℋ
B
→
R
⊆
A
∨
ℋ
B
33
32
ancoms
⊢
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
→
R
⊆
A
∨
ℋ
B
34
33
ad2ant2l
⊢
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
⊆
A
∨
ℋ
B
35
34
adantll
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
⊆
A
∨
ℋ
B
36
35
adantll
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
⊆
A
∨
ℋ
B
37
ssinss1
⊢
C
⊆
A
∨
ℋ
B
→
C
∩
D
⊆
A
∨
ℋ
B
38
37
ad2antrl
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
C
∩
D
⊆
A
∨
ℋ
B
39
38
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
C
∩
D
⊆
A
∨
ℋ
B
40
36
39
jca
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
A
∨
ℋ
B
41
1
2
chjcli
⊢
A
∨
ℋ
B
∈
C
ℋ
42
5
19
41
chlubi
⊢
R
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
A
∨
ℋ
B
↔
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
43
40
42
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
44
31
43
jca
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
∧
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
45
5
3
chjcli
⊢
R
∨
ℋ
C
∈
C
ℋ
46
45
4
chincli
⊢
R
∨
ℋ
C
∩
D
∈
C
ℋ
47
5
19
chjcli
⊢
R
∨
ℋ
C
∩
D
∈
C
ℋ
48
46
47
41
chlubi
⊢
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
∧
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
↔
R
∨
ℋ
C
∩
D
∨
ℋ
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
49
44
48
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
∨
ℋ
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
50
1
2
46
47
mdslle1i
⊢
B
𝑀
ℋ
*
A
∧
A
⊆
R
∨
ℋ
C
∩
D
∩
R
∨
ℋ
C
∩
D
∧
R
∨
ℋ
C
∩
D
∨
ℋ
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
C
∩
D
↔
R
∨
ℋ
C
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
D
∩
B
51
9
26
49
50
syl3anc
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
C
∩
D
↔
R
∨
ℋ
C
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
D
∩
B
52
inindir
⊢
R
∨
ℋ
C
∩
D
∩
B
=
R
∨
ℋ
C
∩
B
∩
D
∩
B
53
sstr
⊢
A
⊆
C
∩
D
∧
C
∩
D
⊆
R
→
A
⊆
R
54
18
53
sylanb
⊢
A
⊆
C
∧
A
⊆
D
∧
C
∩
D
⊆
R
→
A
⊆
R
55
54
ad2ant2r
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
R
56
simplll
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
C
57
55
56
ssind
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
R
∩
C
58
simplrl
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
C
⊆
A
∨
ℋ
B
59
35
58
jca
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
⊆
A
∨
ℋ
B
∧
C
⊆
A
∨
ℋ
B
60
5
3
41
chlubi
⊢
R
⊆
A
∨
ℋ
B
∧
C
⊆
A
∨
ℋ
B
↔
R
∨
ℋ
C
⊆
A
∨
ℋ
B
61
59
60
sylib
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
⊆
A
∨
ℋ
B
62
57
61
jca
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
R
∩
C
∧
R
∨
ℋ
C
⊆
A
∨
ℋ
B
63
1
2
5
3
mdslj1i
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
R
∩
C
∧
R
∨
ℋ
C
⊆
A
∨
ℋ
B
→
R
∨
ℋ
C
∩
B
=
R
∩
B
∨
ℋ
C
∩
B
64
62
63
sylan2
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
B
=
R
∩
B
∨
ℋ
C
∩
B
65
64
anassrs
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
B
=
R
∩
B
∨
ℋ
C
∩
B
66
65
ineq1d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
=
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
67
52
66
eqtr2id
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
=
R
∨
ℋ
C
∩
D
∩
B
68
18
biimpi
⊢
A
⊆
C
∧
A
⊆
D
→
A
⊆
C
∩
D
69
68
adantr
⊢
A
⊆
C
∧
A
⊆
D
∧
C
∩
D
⊆
R
→
A
⊆
C
∩
D
70
54
69
ssind
⊢
A
⊆
C
∧
A
⊆
D
∧
C
∩
D
⊆
R
→
A
⊆
R
∩
C
∩
D
71
33
adantll
⊢
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
→
R
⊆
A
∨
ℋ
B
72
37
ad2antrr
⊢
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
→
C
∩
D
⊆
A
∨
ℋ
B
73
71
72
jca
⊢
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
→
R
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
A
∨
ℋ
B
74
73
42
sylib
⊢
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
75
70
74
anim12i
⊢
A
⊆
C
∧
A
⊆
D
∧
C
∩
D
⊆
R
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
→
A
⊆
R
∩
C
∩
D
∧
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
76
75
an4s
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
A
⊆
R
∩
C
∩
D
∧
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
77
1
2
5
19
mdslj1i
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
R
∩
C
∩
D
∧
R
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
C
∩
D
∩
B
=
R
∩
B
∨
ℋ
C
∩
D
∩
B
78
76
77
sylan2
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
∩
B
=
R
∩
B
∨
ℋ
C
∩
D
∩
B
79
78
anassrs
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
∩
B
=
R
∩
B
∨
ℋ
C
∩
D
∩
B
80
inindir
⊢
C
∩
D
∩
B
=
C
∩
B
∩
D
∩
B
81
80
a1i
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
C
∩
D
∩
B
=
C
∩
B
∩
D
∩
B
82
81
oveq2d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∩
B
∨
ℋ
C
∩
D
∩
B
=
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
83
79
82
eqtr2d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
=
R
∨
ℋ
C
∩
D
∩
B
84
67
83
sseq12d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
↔
R
∨
ℋ
C
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
D
∩
B
85
51
84
bitr4d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
C
∩
D
↔
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
86
85
exbiri
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
→
R
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
C
∩
D
87
86
a2d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
→
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
C
∩
D
88
8
87
syl5
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
∩
B
⊆
D
∩
B
→
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∩
B
∨
ℋ
C
∩
B
∩
D
∩
B
→
C
∩
D
⊆
R
∧
R
⊆
D
→
R
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
C
∩
D