Metamath Proof Explorer


Theorem measun

Description: The measure the union of two disjoint sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017)

Ref Expression
Assertion measun MmeasuresSASBSAB=MAB=MA+𝑒MB

Proof

Step Hyp Ref Expression
1 simp1 MmeasuresSASBSAB=MmeasuresS
2 measbase MmeasuresSSransigAlgebra
3 2 3ad2ant1 MmeasuresSASBSAB=SransigAlgebra
4 simp2l MmeasuresSASBSAB=AS
5 simp2r MmeasuresSASBSAB=BS
6 unelsiga SransigAlgebraASBSABS
7 3 4 5 6 syl3anc MmeasuresSASBSAB=ABS
8 ssun2 BAB
9 8 a1i MmeasuresSASBSAB=BAB
10 measxun2 MmeasuresSABSBSBABMAB=MB+𝑒MABB
11 1 7 5 9 10 syl121anc MmeasuresSASBSAB=MAB=MB+𝑒MABB
12 difun2 ABB=AB
13 uneq1 AB=ABAB=AB
14 uncom AB=AB
15 un0 AB=AB
16 14 15 eqtri AB=AB
17 13 16 eqtrdi AB=ABAB=AB
18 inundif ABAB=A
19 17 18 eqtr3di AB=AB=A
20 12 19 eqtrid AB=ABB=A
21 20 fveq2d AB=MABB=MA
22 21 oveq2d AB=MB+𝑒MABB=MB+𝑒MA
23 22 3ad2ant3 MmeasuresSASBSAB=MB+𝑒MABB=MB+𝑒MA
24 iccssxr 0+∞*
25 measvxrge0 MmeasuresSBSMB0+∞
26 24 25 sselid MmeasuresSBSMB*
27 1 5 26 syl2anc MmeasuresSASBSAB=MB*
28 measvxrge0 MmeasuresSASMA0+∞
29 24 28 sselid MmeasuresSASMA*
30 1 4 29 syl2anc MmeasuresSASBSAB=MA*
31 xaddcom MB*MA*MB+𝑒MA=MA+𝑒MB
32 27 30 31 syl2anc MmeasuresSASBSAB=MB+𝑒MA=MA+𝑒MB
33 11 23 32 3eqtrd MmeasuresSASBSAB=MAB=MA+𝑒MB