Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt10.1 | |
|
metakunt10.2 | |
||
metakunt10.3 | |
||
metakunt10.4 | |
||
metakunt10.5 | |
||
metakunt10.6 | |
||
Assertion | metakunt10 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt10.1 | |
|
2 | metakunt10.2 | |
|
3 | metakunt10.3 | |
|
4 | metakunt10.4 | |
|
5 | metakunt10.5 | |
|
6 | metakunt10.6 | |
|
7 | 4 | a1i | |
8 | eqeq1 | |
|
9 | breq1 | |
|
10 | id | |
|
11 | oveq1 | |
|
12 | 9 10 11 | ifbieq12d | |
13 | 8 12 | ifbieq2d | |
14 | 13 | adantl | |
15 | fveq2 | |
|
16 | 15 | adantl | |
17 | 5 | a1i | |
18 | iftrue | |
|
19 | 18 | adantl | |
20 | 1zzd | |
|
21 | 1 | nnzd | |
22 | 1 | nnge1d | |
23 | 1 | nnred | |
24 | 23 | leidd | |
25 | 20 21 21 22 24 | elfzd | |
26 | 17 19 25 2 | fvmptd | |
27 | 26 | adantr | |
28 | 16 27 | eqtrd | |
29 | iftrue | |
|
30 | 28 29 | syl | |
31 | simpr | |
|
32 | 31 | eqcomd | |
33 | 30 32 | eqtrd | |
34 | 33 | adantr | |
35 | 14 34 | eqtrd | |
36 | 1 2 3 5 | metakunt2 | |
37 | 36 | adantr | |
38 | 6 | adantr | |
39 | 37 38 | ffvelcdmd | |
40 | 7 35 39 38 | fvmptd | |