Metamath Proof Explorer


Theorem metakunt10

Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt10.1 φM
metakunt10.2 φI
metakunt10.3 φIM
metakunt10.4 A=x1Mifx=IMifx<Ixx1
metakunt10.5 C=y1Mify=MIify<Iyy+1
metakunt10.6 φX1M
Assertion metakunt10 φX=MACX=X

Proof

Step Hyp Ref Expression
1 metakunt10.1 φM
2 metakunt10.2 φI
3 metakunt10.3 φIM
4 metakunt10.4 A=x1Mifx=IMifx<Ixx1
5 metakunt10.5 C=y1Mify=MIify<Iyy+1
6 metakunt10.6 φX1M
7 4 a1i φX=MA=x1Mifx=IMifx<Ixx1
8 eqeq1 x=CXx=ICX=I
9 breq1 x=CXx<ICX<I
10 id x=CXx=CX
11 oveq1 x=CXx1=CX1
12 9 10 11 ifbieq12d x=CXifx<Ixx1=ifCX<ICXCX1
13 8 12 ifbieq2d x=CXifx=IMifx<Ixx1=ifCX=IMifCX<ICXCX1
14 13 adantl φX=Mx=CXifx=IMifx<Ixx1=ifCX=IMifCX<ICXCX1
15 fveq2 X=MCX=CM
16 15 adantl φX=MCX=CM
17 5 a1i φC=y1Mify=MIify<Iyy+1
18 iftrue y=Mify=MIify<Iyy+1=I
19 18 adantl φy=Mify=MIify<Iyy+1=I
20 1zzd φ1
21 1 nnzd φM
22 1 nnge1d φ1M
23 1 nnred φM
24 23 leidd φMM
25 20 21 21 22 24 elfzd φM1M
26 17 19 25 2 fvmptd φCM=I
27 26 adantr φX=MCM=I
28 16 27 eqtrd φX=MCX=I
29 iftrue CX=IifCX=IMifCX<ICXCX1=M
30 28 29 syl φX=MifCX=IMifCX<ICXCX1=M
31 simpr φX=MX=M
32 31 eqcomd φX=MM=X
33 30 32 eqtrd φX=MifCX=IMifCX<ICXCX1=X
34 33 adantr φX=Mx=CXifCX=IMifCX<ICXCX1=X
35 14 34 eqtrd φX=Mx=CXifx=IMifx<Ixx1=X
36 1 2 3 5 metakunt2 φC:1M1M
37 36 adantr φX=MC:1M1M
38 6 adantr φX=MX1M
39 37 38 ffvelcdmd φX=MCX1M
40 7 35 39 38 fvmptd φX=MACX=X