| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metakunt16.1 |
|
| 2 |
|
metakunt16.2 |
|
| 3 |
|
metakunt16.3 |
|
| 4 |
|
metakunt16.4 |
|
| 5 |
2
|
nnzd |
|
| 6 |
5
|
adantr |
|
| 7 |
1
|
nnzd |
|
| 8 |
7
|
adantr |
|
| 9 |
|
1zzd |
|
| 10 |
8 9
|
zsubcld |
|
| 11 |
9 6
|
zsubcld |
|
| 12 |
|
simpr |
|
| 13 |
|
elfz3 |
|
| 14 |
11 13
|
syl |
|
| 15 |
6
|
zcnd |
|
| 16 |
|
1cnd |
|
| 17 |
15 16
|
pncan3d |
|
| 18 |
17
|
eqcomd |
|
| 19 |
1
|
nncnd |
|
| 20 |
19
|
adantr |
|
| 21 |
20 16 15
|
npncand |
|
| 22 |
21
|
eqcomd |
|
| 23 |
6 10 11 11 12 14 18 22
|
fzadd2d |
|
| 24 |
5
|
adantr |
|
| 25 |
7
|
adantr |
|
| 26 |
|
1zzd |
|
| 27 |
25 26
|
zsubcld |
|
| 28 |
|
elfznn |
|
| 29 |
28
|
adantl |
|
| 30 |
|
nnz |
|
| 31 |
29 30
|
syl |
|
| 32 |
26 24
|
zsubcld |
|
| 33 |
31 32
|
zsubcld |
|
| 34 |
24
|
zred |
|
| 35 |
34
|
recnd |
|
| 36 |
|
1cnd |
|
| 37 |
35 36
|
pncan3d |
|
| 38 |
28
|
nnge1d |
|
| 39 |
38
|
adantl |
|
| 40 |
37 39
|
eqbrtrd |
|
| 41 |
|
1red |
|
| 42 |
41 34
|
resubcld |
|
| 43 |
29
|
nnred |
|
| 44 |
34 42 43
|
3jca |
|
| 45 |
|
leaddsub |
|
| 46 |
44 45
|
syl |
|
| 47 |
40 46
|
mpbid |
|
| 48 |
|
elfzle2 |
|
| 49 |
48
|
adantl |
|
| 50 |
19
|
adantr |
|
| 51 |
24
|
zcnd |
|
| 52 |
50 36 51
|
npncand |
|
| 53 |
49 52
|
breqtrrd |
|
| 54 |
32
|
zred |
|
| 55 |
27
|
zred |
|
| 56 |
43 54 55
|
lesubaddd |
|
| 57 |
53 56
|
mpbird |
|
| 58 |
24 27 33 47 57
|
elfzd |
|
| 59 |
|
1cnd |
|
| 60 |
35
|
adantrl |
|
| 61 |
59 60
|
subcld |
|
| 62 |
|
elfzelz |
|
| 63 |
62
|
ad2antrl |
|
| 64 |
|
zcn |
|
| 65 |
63 64
|
syl |
|
| 66 |
29
|
adantrl |
|
| 67 |
|
nncn |
|
| 68 |
66 67
|
syl |
|
| 69 |
61 65 68
|
addrsub |
|
| 70 |
69
|
bicomd |
|
| 71 |
61 65
|
addcomd |
|
| 72 |
71
|
eqeq1d |
|
| 73 |
|
eqcom |
|
| 74 |
73
|
a1i |
|
| 75 |
72 74
|
bitrd |
|
| 76 |
70 75
|
bitrd |
|
| 77 |
4 23 58 76
|
f1o2d |
|