Metamath Proof Explorer


Theorem metakunt16

Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024)

Ref Expression
Hypotheses metakunt16.1 φM
metakunt16.2 φI
metakunt16.3 φIM
metakunt16.4 F=xIM1x+1-I
Assertion metakunt16 φF:IM11-1 onto1MI

Proof

Step Hyp Ref Expression
1 metakunt16.1 φM
2 metakunt16.2 φI
3 metakunt16.3 φIM
4 metakunt16.4 F=xIM1x+1-I
5 2 nnzd φI
6 5 adantr φxIM1I
7 1 nnzd φM
8 7 adantr φxIM1M
9 1zzd φxIM11
10 8 9 zsubcld φxIM1M1
11 9 6 zsubcld φxIM11I
12 simpr φxIM1xIM1
13 elfz3 1I1I1I1I
14 11 13 syl φxIM11I1I1I
15 6 zcnd φxIM1I
16 1cnd φxIM11
17 15 16 pncan3d φxIM1I+1-I=1
18 17 eqcomd φxIM11=I+1-I
19 1 nncnd φM
20 19 adantr φxIM1M
21 20 16 15 npncand φxIM1M1+1-I=MI
22 21 eqcomd φxIM1MI=M1+1-I
23 6 10 11 11 12 14 18 22 fzadd2d φxIM1x+1-I1MI
24 5 adantr φy1MII
25 7 adantr φy1MIM
26 1zzd φy1MI1
27 25 26 zsubcld φy1MIM1
28 elfznn y1MIy
29 28 adantl φy1MIy
30 nnz yy
31 29 30 syl φy1MIy
32 26 24 zsubcld φy1MI1I
33 31 32 zsubcld φy1MIy1I
34 24 zred φy1MII
35 34 recnd φy1MII
36 1cnd φy1MI1
37 35 36 pncan3d φy1MII+1-I=1
38 28 nnge1d y1MI1y
39 38 adantl φy1MI1y
40 37 39 eqbrtrd φy1MII+1-Iy
41 1red φy1MI1
42 41 34 resubcld φy1MI1I
43 29 nnred φy1MIy
44 34 42 43 3jca φy1MII1Iy
45 leaddsub I1IyI+1-IyIy1I
46 44 45 syl φy1MII+1-IyIy1I
47 40 46 mpbid φy1MIIy1I
48 elfzle2 y1MIyMI
49 48 adantl φy1MIyMI
50 19 adantr φy1MIM
51 24 zcnd φy1MII
52 50 36 51 npncand φy1MIM1+1-I=MI
53 49 52 breqtrrd φy1MIyM1+1-I
54 32 zred φy1MI1I
55 27 zred φy1MIM1
56 43 54 55 lesubaddd φy1MIy1IM1yM1+1-I
57 53 56 mpbird φy1MIy1IM1
58 24 27 33 47 57 elfzd φy1MIy1IIM1
59 1cnd φxIM1y1MI1
60 35 adantrl φxIM1y1MII
61 59 60 subcld φxIM1y1MI1I
62 elfzelz xIM1x
63 62 ad2antrl φxIM1y1MIx
64 zcn xx
65 63 64 syl φxIM1y1MIx
66 29 adantrl φxIM1y1MIy
67 nncn yy
68 66 67 syl φxIM1y1MIy
69 61 65 68 addrsub φxIM1y1MI1-I+x=yx=y1I
70 69 bicomd φxIM1y1MIx=y1I1-I+x=y
71 61 65 addcomd φxIM1y1MI1-I+x=x+1-I
72 71 eqeq1d φxIM1y1MI1-I+x=yx+1-I=y
73 eqcom x+1-I=yy=x+1-I
74 73 a1i φxIM1y1MIx+1-I=yy=x+1-I
75 72 74 bitrd φxIM1y1MI1-I+x=yy=x+1-I
76 70 75 bitrd φxIM1y1MIx=y1Iy=x+1-I
77 4 23 58 76 f1o2d φF:IM11-1 onto1MI