Metamath Proof Explorer


Theorem metsscmetcld

Description: A complete subspace of a metric space is closed in the parent space. Formerly part of proof for cmetss . (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 9-Oct-2022)

Ref Expression
Hypothesis metsscmetcld.j J=MetOpenD
Assertion metsscmetcld DMetXDY×YCMetYYClsdJ

Proof

Step Hyp Ref Expression
1 metsscmetcld.j J=MetOpenD
2 metxmet DMetXD∞MetX
3 2 adantr DMetXDY×YCMetYD∞MetX
4 1 mopntopon D∞MetXJTopOnX
5 3 4 syl DMetXDY×YCMetYJTopOnX
6 resss DY×YD
7 dmss DY×YDdomDY×YdomD
8 dmss domDY×YdomDdomdomDY×YdomdomD
9 6 7 8 mp2b domdomDY×YdomdomD
10 cmetmet DY×YCMetYDY×YMetY
11 metdmdm DY×YMetYY=domdomDY×Y
12 10 11 syl DY×YCMetYY=domdomDY×Y
13 metdmdm DMetXX=domdomD
14 sseq12 Y=domdomDY×YX=domdomDYXdomdomDY×YdomdomD
15 12 13 14 syl2anr DMetXDY×YCMetYYXdomdomDY×YdomdomD
16 9 15 mpbiri DMetXDY×YCMetYYX
17 flimcls JTopOnXYXxclsJYfFilXYfxJfLimf
18 5 16 17 syl2anc DMetXDY×YCMetYxclsJYfFilXYfxJfLimf
19 simprrr DMetXDY×YCMetYfFilXYfxJfLimfxJfLimf
20 3 adantr DMetXDY×YCMetYfFilXYfxJfLimfD∞MetX
21 1 methaus D∞MetXJHaus
22 hausflimi JHaus*xxJfLimf
23 20 21 22 3syl DMetXDY×YCMetYfFilXYfxJfLimf*xxJfLimf
24 20 4 syl DMetXDY×YCMetYfFilXYfxJfLimfJTopOnX
25 simprl DMetXDY×YCMetYfFilXYfxJfLimffFilX
26 simprrl DMetXDY×YCMetYfFilXYfxJfLimfYf
27 flimrest JTopOnXfFilXYfJ𝑡YfLimf𝑡Y=JfLimfY
28 24 25 26 27 syl3anc DMetXDY×YCMetYfFilXYfxJfLimfJ𝑡YfLimf𝑡Y=JfLimfY
29 16 adantr DMetXDY×YCMetYfFilXYfxJfLimfYX
30 eqid DY×Y=DY×Y
31 eqid MetOpenDY×Y=MetOpenDY×Y
32 30 1 31 metrest D∞MetXYXJ𝑡Y=MetOpenDY×Y
33 20 29 32 syl2anc DMetXDY×YCMetYfFilXYfxJfLimfJ𝑡Y=MetOpenDY×Y
34 33 oveq1d DMetXDY×YCMetYfFilXYfxJfLimfJ𝑡YfLimf𝑡Y=MetOpenDY×YfLimf𝑡Y
35 28 34 eqtr3d DMetXDY×YCMetYfFilXYfxJfLimfJfLimfY=MetOpenDY×YfLimf𝑡Y
36 simplr DMetXDY×YCMetYfFilXYfxJfLimfDY×YCMetY
37 1 flimcfil D∞MetXxJfLimffCauFilD
38 20 19 37 syl2anc DMetXDY×YCMetYfFilXYfxJfLimffCauFilD
39 cfilres D∞MetXfFilXYffCauFilDf𝑡YCauFilDY×Y
40 20 25 26 39 syl3anc DMetXDY×YCMetYfFilXYfxJfLimffCauFilDf𝑡YCauFilDY×Y
41 38 40 mpbid DMetXDY×YCMetYfFilXYfxJfLimff𝑡YCauFilDY×Y
42 31 cmetcvg DY×YCMetYf𝑡YCauFilDY×YMetOpenDY×YfLimf𝑡Y
43 36 41 42 syl2anc DMetXDY×YCMetYfFilXYfxJfLimfMetOpenDY×YfLimf𝑡Y
44 35 43 eqnetrd DMetXDY×YCMetYfFilXYfxJfLimfJfLimfY
45 ndisj JfLimfYxxJfLimfxY
46 44 45 sylib DMetXDY×YCMetYfFilXYfxJfLimfxxJfLimfxY
47 mopick *xxJfLimfxxJfLimfxYxJfLimfxY
48 23 46 47 syl2anc DMetXDY×YCMetYfFilXYfxJfLimfxJfLimfxY
49 19 48 mpd DMetXDY×YCMetYfFilXYfxJfLimfxY
50 49 rexlimdvaa DMetXDY×YCMetYfFilXYfxJfLimfxY
51 18 50 sylbid DMetXDY×YCMetYxclsJYxY
52 51 ssrdv DMetXDY×YCMetYclsJYY
53 1 mopntop D∞MetXJTop
54 3 53 syl DMetXDY×YCMetYJTop
55 1 mopnuni D∞MetXX=J
56 3 55 syl DMetXDY×YCMetYX=J
57 16 56 sseqtrd DMetXDY×YCMetYYJ
58 eqid J=J
59 58 iscld4 JTopYJYClsdJclsJYY
60 54 57 59 syl2anc DMetXDY×YCMetYYClsdJclsJYY
61 52 60 mpbird DMetXDY×YCMetYYClsdJ