Description: A complete subspace of a metric space is closed in the parent space. Formerly part of proof for cmetss . (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 9-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | metsscmetcld.j | |
|
Assertion | metsscmetcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metsscmetcld.j | |
|
2 | metxmet | |
|
3 | 2 | adantr | |
4 | 1 | mopntopon | |
5 | 3 4 | syl | |
6 | resss | |
|
7 | dmss | |
|
8 | dmss | |
|
9 | 6 7 8 | mp2b | |
10 | cmetmet | |
|
11 | metdmdm | |
|
12 | 10 11 | syl | |
13 | metdmdm | |
|
14 | sseq12 | |
|
15 | 12 13 14 | syl2anr | |
16 | 9 15 | mpbiri | |
17 | flimcls | |
|
18 | 5 16 17 | syl2anc | |
19 | simprrr | |
|
20 | 3 | adantr | |
21 | 1 | methaus | |
22 | hausflimi | |
|
23 | 20 21 22 | 3syl | |
24 | 20 4 | syl | |
25 | simprl | |
|
26 | simprrl | |
|
27 | flimrest | |
|
28 | 24 25 26 27 | syl3anc | |
29 | 16 | adantr | |
30 | eqid | |
|
31 | eqid | |
|
32 | 30 1 31 | metrest | |
33 | 20 29 32 | syl2anc | |
34 | 33 | oveq1d | |
35 | 28 34 | eqtr3d | |
36 | simplr | |
|
37 | 1 | flimcfil | |
38 | 20 19 37 | syl2anc | |
39 | cfilres | |
|
40 | 20 25 26 39 | syl3anc | |
41 | 38 40 | mpbid | |
42 | 31 | cmetcvg | |
43 | 36 41 42 | syl2anc | |
44 | 35 43 | eqnetrd | |
45 | ndisj | |
|
46 | 44 45 | sylib | |
47 | mopick | |
|
48 | 23 46 47 | syl2anc | |
49 | 19 48 | mpd | |
50 | 49 | rexlimdvaa | |
51 | 18 50 | sylbid | |
52 | 51 | ssrdv | |
53 | 1 | mopntop | |
54 | 3 53 | syl | |
55 | 1 | mopnuni | |
56 | 3 55 | syl | |
57 | 16 56 | sseqtrd | |
58 | eqid | |
|
59 | 58 | iscld4 | |
60 | 54 57 59 | syl2anc | |
61 | 52 60 | mpbird | |