Metamath Proof Explorer


Theorem mhmcompl

Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses mhmcompl.p P=ImPolyR
mhmcompl.q Q=ImPolyS
mhmcompl.b B=BaseP
mhmcompl.c C=BaseQ
mhmcompl.i φIV
mhmcompl.h φHRMndHomS
mhmcompl.f φFB
Assertion mhmcompl φHFC

Proof

Step Hyp Ref Expression
1 mhmcompl.p P=ImPolyR
2 mhmcompl.q Q=ImPolyS
3 mhmcompl.b B=BaseP
4 mhmcompl.c C=BaseQ
5 mhmcompl.i φIV
6 mhmcompl.h φHRMndHomS
7 mhmcompl.f φFB
8 fvexd φBaseSV
9 ovex 0IV
10 9 rabex f0I|f-1FinV
11 10 a1i φf0I|f-1FinV
12 eqid BaseR=BaseR
13 eqid BaseS=BaseS
14 12 13 mhmf HRMndHomSH:BaseRBaseS
15 6 14 syl φH:BaseRBaseS
16 eqid f0I|f-1Fin=f0I|f-1Fin
17 1 12 3 16 7 mplelf φF:f0I|f-1FinBaseR
18 15 17 fcod φHF:f0I|f-1FinBaseS
19 8 11 18 elmapdd φHFBaseSf0I|f-1Fin
20 eqid ImPwSerS=ImPwSerS
21 eqid BaseImPwSerS=BaseImPwSerS
22 20 13 16 21 5 psrbas φBaseImPwSerS=BaseSf0I|f-1Fin
23 19 22 eleqtrrd φHFBaseImPwSerS
24 fvexd φ0SV
25 mhmrcl1 HRMndHomSRMnd
26 6 25 syl φRMnd
27 eqid 0R=0R
28 12 27 mndidcl RMnd0RBaseR
29 26 28 syl φ0RBaseR
30 ssidd φBaseRBaseR
31 fvexd φBaseRV
32 1 3 27 7 26 mplelsfi φfinSupp0RF
33 eqid 0S=0S
34 27 33 mhm0 HRMndHomSH0R=0S
35 6 34 syl φH0R=0S
36 24 29 17 15 30 11 31 32 35 fsuppcor φfinSupp0SHF
37 2 20 21 33 4 mplelbas HFCHFBaseImPwSerSfinSupp0SHF
38 23 36 37 sylanbrc φHFC