Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhmcompl.p | |
|
mhmcompl.q | |
||
mhmcompl.b | |
||
mhmcompl.c | |
||
mhmcompl.i | |
||
mhmcompl.h | |
||
mhmcompl.f | |
||
Assertion | mhmcompl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmcompl.p | |
|
2 | mhmcompl.q | |
|
3 | mhmcompl.b | |
|
4 | mhmcompl.c | |
|
5 | mhmcompl.i | |
|
6 | mhmcompl.h | |
|
7 | mhmcompl.f | |
|
8 | fvexd | |
|
9 | ovex | |
|
10 | 9 | rabex | |
11 | 10 | a1i | |
12 | eqid | |
|
13 | eqid | |
|
14 | 12 13 | mhmf | |
15 | 6 14 | syl | |
16 | eqid | |
|
17 | 1 12 3 16 7 | mplelf | |
18 | 15 17 | fcod | |
19 | 8 11 18 | elmapdd | |
20 | eqid | |
|
21 | eqid | |
|
22 | 20 13 16 21 5 | psrbas | |
23 | 19 22 | eleqtrrd | |
24 | fvexd | |
|
25 | mhmrcl1 | |
|
26 | 6 25 | syl | |
27 | eqid | |
|
28 | 12 27 | mndidcl | |
29 | 26 28 | syl | |
30 | ssidd | |
|
31 | fvexd | |
|
32 | 1 3 27 7 26 | mplelsfi | |
33 | eqid | |
|
34 | 27 33 | mhm0 | |
35 | 6 34 | syl | |
36 | 24 29 17 15 30 11 31 32 35 | fsuppcor | |
37 | 2 20 21 33 4 | mplelbas | |
38 | 23 36 37 | sylanbrc | |