| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|
| 2 |
|
odcl.2 |
|
| 3 |
|
odid.3 |
|
| 4 |
|
odid.4 |
|
| 5 |
|
oveq1 |
|
| 6 |
|
simp2l |
|
| 7 |
6
|
nn0zd |
|
| 8 |
|
simp3 |
|
| 9 |
7 8
|
zmodcld |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
nn0red |
|
| 12 |
|
simp2r |
|
| 13 |
12
|
nn0zd |
|
| 14 |
13 8
|
zmodcld |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
nn0red |
|
| 17 |
|
simp1l |
|
| 18 |
17
|
adantr |
|
| 19 |
|
simp1r |
|
| 20 |
19
|
adantr |
|
| 21 |
8
|
adantr |
|
| 22 |
6
|
nn0red |
|
| 23 |
8
|
nnrpd |
|
| 24 |
|
modlt |
|
| 25 |
22 23 24
|
syl2anc |
|
| 26 |
25
|
adantr |
|
| 27 |
12
|
nn0red |
|
| 28 |
|
modlt |
|
| 29 |
27 23 28
|
syl2anc |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simpr |
|
| 32 |
1 2 3 4 18 20 21 10 15 26 30 31
|
mndodconglem |
|
| 33 |
31
|
eqcomd |
|
| 34 |
1 2 3 4 18 20 21 15 10 30 26 33
|
mndodconglem |
|
| 35 |
34
|
eqcomd |
|
| 36 |
11 16 32 35
|
lecasei |
|
| 37 |
36
|
ex |
|
| 38 |
5 37
|
impbid2 |
|
| 39 |
|
moddvds |
|
| 40 |
8 7 13 39
|
syl3anc |
|
| 41 |
1 2 3 4
|
odmodnn0 |
|
| 42 |
17 19 6 8 41
|
syl31anc |
|
| 43 |
1 2 3 4
|
odmodnn0 |
|
| 44 |
17 19 12 8 43
|
syl31anc |
|
| 45 |
42 44
|
eqeq12d |
|
| 46 |
38 40 45
|
3bitr3d |
|