| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|
| 2 |
|
odcl.2 |
|
| 3 |
|
odid.3 |
|
| 4 |
|
odid.4 |
|
| 5 |
|
mndodconglem.1 |
|
| 6 |
|
mndodconglem.2 |
|
| 7 |
|
mndodconglem.3 |
|
| 8 |
|
mndodconglem.4 |
|
| 9 |
|
mndodconglem.5 |
|
| 10 |
|
mndodconglem.6 |
|
| 11 |
|
mndodconglem.7 |
|
| 12 |
|
mndodconglem.8 |
|
| 13 |
7
|
nnred |
|
| 14 |
13
|
recnd |
|
| 15 |
8
|
nn0red |
|
| 16 |
15
|
recnd |
|
| 17 |
9
|
nn0red |
|
| 18 |
17
|
recnd |
|
| 19 |
14 16 18
|
addsubassd |
|
| 20 |
7
|
nnzd |
|
| 21 |
8
|
nn0zd |
|
| 22 |
20 21
|
zaddcld |
|
| 23 |
22
|
zred |
|
| 24 |
|
nn0addge1 |
|
| 25 |
13 8 24
|
syl2anc |
|
| 26 |
17 13 23 11 25
|
ltletrd |
|
| 27 |
9
|
nn0zd |
|
| 28 |
|
znnsub |
|
| 29 |
27 22 28
|
syl2anc |
|
| 30 |
26 29
|
mpbid |
|
| 31 |
19 30
|
eqeltrrd |
|
| 32 |
14 16 18
|
addsub12d |
|
| 33 |
32
|
oveq1d |
|
| 34 |
12
|
oveq1d |
|
| 35 |
|
znnsub |
|
| 36 |
27 20 35
|
syl2anc |
|
| 37 |
11 36
|
mpbid |
|
| 38 |
37
|
nnnn0d |
|
| 39 |
|
eqid |
|
| 40 |
1 3 39
|
mulgnn0dir |
|
| 41 |
5 8 38 6 40
|
syl13anc |
|
| 42 |
1 3 39
|
mulgnn0dir |
|
| 43 |
5 9 38 6 42
|
syl13anc |
|
| 44 |
34 41 43
|
3eqtr4d |
|
| 45 |
18 14
|
pncan3d |
|
| 46 |
45
|
oveq1d |
|
| 47 |
1 2 3 4
|
odid |
|
| 48 |
6 47
|
syl |
|
| 49 |
46 48
|
eqtrd |
|
| 50 |
44 49
|
eqtrd |
|
| 51 |
33 50
|
eqtrd |
|
| 52 |
1 2 3 4
|
odlem2 |
|
| 53 |
6 31 51 52
|
syl3anc |
|
| 54 |
|
elfzle2 |
|
| 55 |
53 54
|
syl |
|
| 56 |
21 27
|
zsubcld |
|
| 57 |
56
|
zred |
|
| 58 |
13 57
|
addge01d |
|
| 59 |
55 58
|
mpbird |
|
| 60 |
15 17
|
subge0d |
|
| 61 |
59 60
|
mpbid |
|
| 62 |
15 17
|
letri3d |
|
| 63 |
62
|
biimprd |
|
| 64 |
61 63
|
mpan2d |
|
| 65 |
64
|
imp |
|