| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndpropd.1 |
|
| 2 |
|
mndpropd.2 |
|
| 3 |
|
mndpropd.3 |
|
| 4 |
|
simplr |
|
| 5 |
|
simprl |
|
| 6 |
1
|
ad2antrr |
|
| 7 |
5 6
|
eleqtrd |
|
| 8 |
|
simprr |
|
| 9 |
8 6
|
eleqtrd |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
10 11
|
mndcl |
|
| 13 |
4 7 9 12
|
syl3anc |
|
| 14 |
13 6
|
eleqtrrd |
|
| 15 |
14
|
ralrimivva |
|
| 16 |
15
|
ex |
|
| 17 |
|
simplr |
|
| 18 |
|
simprl |
|
| 19 |
2
|
ad2antrr |
|
| 20 |
18 19
|
eleqtrd |
|
| 21 |
|
simprr |
|
| 22 |
21 19
|
eleqtrd |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
23 24
|
mndcl |
|
| 26 |
17 20 22 25
|
syl3anc |
|
| 27 |
3
|
adantlr |
|
| 28 |
26 27 19
|
3eltr4d |
|
| 29 |
28
|
ralrimivva |
|
| 30 |
29
|
ex |
|
| 31 |
3
|
oveqrspc2v |
|
| 32 |
31
|
adantlr |
|
| 33 |
32
|
eleq1d |
|
| 34 |
|
simplll |
|
| 35 |
|
simplrl |
|
| 36 |
|
simplrr |
|
| 37 |
|
simpllr |
|
| 38 |
|
ovrspc2v |
|
| 39 |
35 36 37 38
|
syl21anc |
|
| 40 |
|
simpr |
|
| 41 |
3
|
oveqrspc2v |
|
| 42 |
34 39 40 41
|
syl12anc |
|
| 43 |
34 35 36 31
|
syl12anc |
|
| 44 |
43
|
oveq1d |
|
| 45 |
42 44
|
eqtrd |
|
| 46 |
|
ovrspc2v |
|
| 47 |
36 40 37 46
|
syl21anc |
|
| 48 |
3
|
oveqrspc2v |
|
| 49 |
34 35 47 48
|
syl12anc |
|
| 50 |
3
|
oveqrspc2v |
|
| 51 |
34 36 40 50
|
syl12anc |
|
| 52 |
51
|
oveq2d |
|
| 53 |
49 52
|
eqtrd |
|
| 54 |
45 53
|
eqeq12d |
|
| 55 |
54
|
ralbidva |
|
| 56 |
33 55
|
anbi12d |
|
| 57 |
56
|
2ralbidva |
|
| 58 |
1
|
adantr |
|
| 59 |
58
|
eleq2d |
|
| 60 |
58
|
raleqdv |
|
| 61 |
59 60
|
anbi12d |
|
| 62 |
58 61
|
raleqbidv |
|
| 63 |
58 62
|
raleqbidv |
|
| 64 |
2
|
adantr |
|
| 65 |
64
|
eleq2d |
|
| 66 |
64
|
raleqdv |
|
| 67 |
65 66
|
anbi12d |
|
| 68 |
64 67
|
raleqbidv |
|
| 69 |
64 68
|
raleqbidv |
|
| 70 |
57 63 69
|
3bitr3d |
|
| 71 |
|
simplll |
|
| 72 |
|
simplr |
|
| 73 |
|
simpr |
|
| 74 |
3
|
oveqrspc2v |
|
| 75 |
71 72 73 74
|
syl12anc |
|
| 76 |
75
|
eqeq1d |
|
| 77 |
3
|
oveqrspc2v |
|
| 78 |
71 73 72 77
|
syl12anc |
|
| 79 |
78
|
eqeq1d |
|
| 80 |
76 79
|
anbi12d |
|
| 81 |
80
|
ralbidva |
|
| 82 |
81
|
rexbidva |
|
| 83 |
58
|
raleqdv |
|
| 84 |
58 83
|
rexeqbidv |
|
| 85 |
64
|
raleqdv |
|
| 86 |
64 85
|
rexeqbidv |
|
| 87 |
82 84 86
|
3bitr3d |
|
| 88 |
70 87
|
anbi12d |
|
| 89 |
10 11
|
ismnd |
|
| 90 |
23 24
|
ismnd |
|
| 91 |
88 89 90
|
3bitr4g |
|
| 92 |
91
|
ex |
|
| 93 |
16 30 92
|
pm5.21ndd |
|