Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite sums
modfsummods
Next ⟩
modfsummod
Metamath Proof Explorer
Ascii
Unicode
Theorem
modfsummods
Description:
Induction step for
modfsummod
.
(Contributed by
Alexander van der Vekens
, 1-Sep-2018)
Ref
Expression
Assertion
modfsummods
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
Proof
Step
Hyp
Ref
Expression
1
snssi
⊢
z
∈
A
→
z
⊆
A
2
ssequn1
⊢
z
⊆
A
↔
z
∪
A
=
A
3
uncom
⊢
z
∪
A
=
A
∪
z
4
3
eqeq1i
⊢
z
∪
A
=
A
↔
A
∪
z
=
A
5
sumeq1
⊢
A
=
A
∪
z
→
∑
k
∈
A
B
=
∑
k
∈
A
∪
z
B
6
5
oveq1d
⊢
A
=
A
∪
z
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
7
sumeq1
⊢
A
=
A
∪
z
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
8
7
oveq1d
⊢
A
=
A
∪
z
→
∑
k
∈
A
B
mod
N
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
9
6
8
eqeq12d
⊢
A
=
A
∪
z
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
↔
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
10
9
eqcoms
⊢
A
∪
z
=
A
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
↔
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
11
4
10
sylbi
⊢
z
∪
A
=
A
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
↔
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
12
11
biimpd
⊢
z
∪
A
=
A
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
13
12
a1d
⊢
z
∪
A
=
A
→
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
14
2
13
sylbi
⊢
z
⊆
A
→
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
15
1
14
syl
⊢
z
∈
A
→
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
16
df-nel
⊢
z
∉
A
↔
¬
z
∈
A
17
simp1
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
A
∈
Fin
18
17
ad2antlr
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
A
∈
Fin
19
simpl
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
z
∉
A
20
19
adantr
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
z
∉
A
21
vex
⊢
z
∈
V
22
20
21
jctil
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
z
∈
V
∧
z
∉
A
23
simplr3
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∀
k
∈
A
∪
z
B
∈
ℤ
24
fsumsplitsnun
⦋
⦌
⊢
A
∈
Fin
∧
z
∈
V
∧
z
∉
A
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
∪
z
B
=
∑
k
∈
A
B
+
⦋
z
/
k
⦌
B
25
18
22
23
24
syl3anc
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
=
∑
k
∈
A
B
+
⦋
z
/
k
⦌
B
26
25
oveq1d
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
B
+
⦋
z
/
k
⦌
B
mod
N
27
ralunb
⊢
∀
k
∈
A
∪
z
B
∈
ℤ
↔
∀
k
∈
A
B
∈
ℤ
∧
∀
k
∈
z
B
∈
ℤ
28
simpl
⊢
∀
k
∈
A
B
∈
ℤ
∧
∀
k
∈
z
B
∈
ℤ
→
∀
k
∈
A
B
∈
ℤ
29
27
28
sylbi
⊢
∀
k
∈
A
∪
z
B
∈
ℤ
→
∀
k
∈
A
B
∈
ℤ
30
fsumzcl2
⊢
A
∈
Fin
∧
∀
k
∈
A
B
∈
ℤ
→
∑
k
∈
A
B
∈
ℤ
31
29
30
sylan2
⊢
A
∈
Fin
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
∈
ℤ
32
31
3adant2
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
∈
ℤ
33
32
adantl
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
∈
ℤ
34
33
zred
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
∈
ℝ
35
modfsummodslem1
⦋
⦌
⊢
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℤ
36
35
3ad2ant3
⦋
⦌
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℤ
37
36
adantl
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℤ
38
37
zred
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℝ
39
nnrp
⊢
N
∈
ℕ
→
N
∈
ℝ
+
40
39
3ad2ant2
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
N
∈
ℝ
+
41
40
adantl
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
N
∈
ℝ
+
42
modaddabs
⦋
⦌
⦋
⦌
⦋
⦌
⊢
∑
k
∈
A
B
∈
ℝ
∧
⦋
z
/
k
⦌
B
∈
ℝ
∧
N
∈
ℝ
+
→
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
=
∑
k
∈
A
B
+
⦋
z
/
k
⦌
B
mod
N
43
34
38
41
42
syl3anc
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
=
∑
k
∈
A
B
+
⦋
z
/
k
⦌
B
mod
N
44
43
eqcomd
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
+
⦋
z
/
k
⦌
B
mod
N
=
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
45
44
adantr
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
+
⦋
z
/
k
⦌
B
mod
N
=
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
46
simpr
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
47
35
zred
⦋
⦌
⊢
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℝ
48
47
3ad2ant3
⦋
⦌
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℝ
49
48
adantl
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℝ
50
49
41
jca
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℝ
∧
N
∈
ℝ
+
51
50
adantr
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
⦋
z
/
k
⦌
B
∈
ℝ
∧
N
∈
ℝ
+
52
modabs2
⦋
⦌
⦋
⦌
⦋
⦌
⊢
⦋
z
/
k
⦌
B
∈
ℝ
∧
N
∈
ℝ
+
→
⦋
z
/
k
⦌
B
mod
N
mod
N
=
⦋
z
/
k
⦌
B
mod
N
53
52
eqcomd
⦋
⦌
⦋
⦌
⦋
⦌
⊢
⦋
z
/
k
⦌
B
∈
ℝ
∧
N
∈
ℝ
+
→
⦋
z
/
k
⦌
B
mod
N
=
⦋
z
/
k
⦌
B
mod
N
mod
N
54
51
53
syl
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
⦋
z
/
k
⦌
B
mod
N
=
⦋
z
/
k
⦌
B
mod
N
mod
N
55
46
54
oveq12d
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
56
55
oveq1d
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
mod
N
57
45
56
eqtrd
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
+
⦋
z
/
k
⦌
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
mod
N
58
zmodcl
⊢
B
∈
ℤ
∧
N
∈
ℕ
→
B
mod
N
∈
ℕ
0
59
58
nn0zd
⊢
B
∈
ℤ
∧
N
∈
ℕ
→
B
mod
N
∈
ℤ
60
59
expcom
⊢
N
∈
ℕ
→
B
∈
ℤ
→
B
mod
N
∈
ℤ
61
60
ralimdv
⊢
N
∈
ℕ
→
∀
k
∈
A
B
∈
ℤ
→
∀
k
∈
A
B
mod
N
∈
ℤ
62
61
com12
⊢
∀
k
∈
A
B
∈
ℤ
→
N
∈
ℕ
→
∀
k
∈
A
B
mod
N
∈
ℤ
63
62
adantr
⊢
∀
k
∈
A
B
∈
ℤ
∧
∀
k
∈
z
B
∈
ℤ
→
N
∈
ℕ
→
∀
k
∈
A
B
mod
N
∈
ℤ
64
27
63
sylbi
⊢
∀
k
∈
A
∪
z
B
∈
ℤ
→
N
∈
ℕ
→
∀
k
∈
A
B
mod
N
∈
ℤ
65
64
impcom
⊢
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∀
k
∈
A
B
mod
N
∈
ℤ
66
65
3adant1
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∀
k
∈
A
B
mod
N
∈
ℤ
67
17
66
jca
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
A
∈
Fin
∧
∀
k
∈
A
B
mod
N
∈
ℤ
68
fsumzcl2
⊢
A
∈
Fin
∧
∀
k
∈
A
B
mod
N
∈
ℤ
→
∑
k
∈
A
B
mod
N
∈
ℤ
69
68
zred
⊢
A
∈
Fin
∧
∀
k
∈
A
B
mod
N
∈
ℤ
→
∑
k
∈
A
B
mod
N
∈
ℝ
70
67
69
syl
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
∈
ℝ
71
70
ad2antlr
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
∈
ℝ
72
35
anim1i
⦋
⦌
⊢
∀
k
∈
A
∪
z
B
∈
ℤ
∧
N
∈
ℕ
→
⦋
z
/
k
⦌
B
∈
ℤ
∧
N
∈
ℕ
73
72
ancoms
⦋
⦌
⊢
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
∈
ℤ
∧
N
∈
ℕ
74
zmodcl
⦋
⦌
⦋
⦌
⊢
⦋
z
/
k
⦌
B
∈
ℤ
∧
N
∈
ℕ
→
⦋
z
/
k
⦌
B
mod
N
∈
ℕ
0
75
73
74
syl
⦋
⦌
⊢
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
mod
N
∈
ℕ
0
76
75
nn0red
⦋
⦌
⊢
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
mod
N
∈
ℝ
77
76
3adant1
⦋
⦌
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
⦋
z
/
k
⦌
B
mod
N
∈
ℝ
78
77
ad2antlr
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
⦋
z
/
k
⦌
B
mod
N
∈
ℝ
79
40
ad2antlr
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
N
∈
ℝ
+
80
modaddabs
⦋
⦌
⦋
⦌
⦋
⦌
⊢
∑
k
∈
A
B
mod
N
∈
ℝ
∧
⦋
z
/
k
⦌
B
mod
N
∈
ℝ
∧
N
∈
ℝ
+
→
∑
k
∈
A
B
mod
N
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
mod
N
=
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
81
71
78
79
80
syl3anc
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
mod
N
=
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
82
60
ralimdv
⊢
N
∈
ℕ
→
∀
k
∈
A
∪
z
B
∈
ℤ
→
∀
k
∈
A
∪
z
B
mod
N
∈
ℤ
83
82
imp
⊢
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∀
k
∈
A
∪
z
B
mod
N
∈
ℤ
84
83
3adant1
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∀
k
∈
A
∪
z
B
mod
N
∈
ℤ
85
84
ad2antlr
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∀
k
∈
A
∪
z
B
mod
N
∈
ℤ
86
fsumsplitsnun
⦋
⦌
⊢
A
∈
Fin
∧
z
∈
V
∧
z
∉
A
∧
∀
k
∈
A
∪
z
B
mod
N
∈
ℤ
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
87
18
22
85
86
syl3anc
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
88
csbov1g
⦋
⦌
⦋
⦌
⊢
z
∈
V
→
⦋
z
/
k
⦌
B
mod
N
=
⦋
z
/
k
⦌
B
mod
N
89
21
88
mp1i
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
⦋
z
/
k
⦌
B
mod
N
=
⦋
z
/
k
⦌
B
mod
N
90
89
oveq2d
⦋
⦌
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
=
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
91
87
90
eqtrd
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
92
91
eqcomd
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
93
92
oveq1d
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
94
81
93
eqtrd
⦋
⦌
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
B
mod
N
mod
N
+
⦋
z
/
k
⦌
B
mod
N
mod
N
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
95
26
57
94
3eqtrd
⊢
z
∉
A
∧
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
∧
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
96
95
exp31
⊢
z
∉
A
→
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
97
16
96
sylbir
⊢
¬
z
∈
A
→
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N
98
15
97
pm2.61i
⊢
A
∈
Fin
∧
N
∈
ℕ
∧
∀
k
∈
A
∪
z
B
∈
ℤ
→
∑
k
∈
A
B
mod
N
=
∑
k
∈
A
B
mod
N
mod
N
→
∑
k
∈
A
∪
z
B
mod
N
=
∑
k
∈
A
∪
z
B
mod
N
mod
N