Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | modprmn0modprm0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 | |
|
2 | prmnn | |
|
3 | zmodfzo | |
|
4 | 2 3 | sylan2 | |
5 | 4 | ancoms | |
6 | 5 | 3adant3 | |
7 | fzo1fzo0n0 | |
|
8 | 7 | simplbi2com | |
9 | 8 | 3ad2ant3 | |
10 | 6 9 | mpd | |
11 | 10 | adantr | |
12 | simpr | |
|
13 | nnnn0modprm0 | |
|
14 | 1 11 12 13 | syl3anc | |
15 | elfzoelz | |
|
16 | 15 | zcnd | |
17 | 2 | anim1ci | |
18 | zmodcl | |
|
19 | nn0cn | |
|
20 | 17 18 19 | 3syl | |
21 | 20 | 3adant3 | |
22 | 21 | adantr | |
23 | mulcom | |
|
24 | 16 22 23 | syl2anr | |
25 | 24 | oveq2d | |
26 | 25 | oveq1d | |
27 | elfzoelz | |
|
28 | 27 | zred | |
29 | 28 | adantl | |
30 | 29 | adantr | |
31 | zre | |
|
32 | 31 | 3ad2ant2 | |
33 | 32 | adantr | |
34 | 33 | adantr | |
35 | 15 | adantl | |
36 | 2 | nnrpd | |
37 | 36 | 3ad2ant1 | |
38 | 37 | adantr | |
39 | 38 | adantr | |
40 | modaddmulmod | |
|
41 | 30 34 35 39 40 | syl31anc | |
42 | zcn | |
|
43 | 42 | adantr | |
44 | 16 | adantl | |
45 | 43 44 | mulcomd | |
46 | 45 | ex | |
47 | 46 | 3ad2ant2 | |
48 | 47 | adantr | |
49 | 48 | imp | |
50 | 49 | oveq2d | |
51 | 50 | oveq1d | |
52 | 26 41 51 | 3eqtrrd | |
53 | 52 | eqeq1d | |
54 | 53 | rexbidva | |
55 | 14 54 | mpbird | |
56 | 55 | ex | |