Metamath Proof Explorer


Theorem mpfconst

Description: Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses mpfconst.b B = Base S
mpfconst.q Q = ran I evalSub S R
mpfconst.i φ I V
mpfconst.s φ S CRing
mpfconst.r φ R SubRing S
mpfconst.x φ X R
Assertion mpfconst φ B I × X Q

Proof

Step Hyp Ref Expression
1 mpfconst.b B = Base S
2 mpfconst.q Q = ran I evalSub S R
3 mpfconst.i φ I V
4 mpfconst.s φ S CRing
5 mpfconst.r φ R SubRing S
6 mpfconst.x φ X R
7 eqid I evalSub S R = I evalSub S R
8 eqid I mPoly S 𝑠 R = I mPoly S 𝑠 R
9 eqid S 𝑠 R = S 𝑠 R
10 eqid algSc I mPoly S 𝑠 R = algSc I mPoly S 𝑠 R
11 7 8 9 1 10 3 4 5 6 evlssca φ I evalSub S R algSc I mPoly S 𝑠 R X = B I × X
12 eqid S 𝑠 B I = S 𝑠 B I
13 7 8 9 12 1 evlsrhm I V S CRing R SubRing S I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I
14 3 4 5 13 syl3anc φ I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I
15 eqid Base I mPoly S 𝑠 R = Base I mPoly S 𝑠 R
16 eqid Base S 𝑠 B I = Base S 𝑠 B I
17 15 16 rhmf I evalSub S R I mPoly S 𝑠 R RingHom S 𝑠 B I I evalSub S R : Base I mPoly S 𝑠 R Base S 𝑠 B I
18 ffn I evalSub S R : Base I mPoly S 𝑠 R Base S 𝑠 B I I evalSub S R Fn Base I mPoly S 𝑠 R
19 14 17 18 3syl φ I evalSub S R Fn Base I mPoly S 𝑠 R
20 9 subrgring R SubRing S S 𝑠 R Ring
21 5 20 syl φ S 𝑠 R Ring
22 eqid Scalar I mPoly S 𝑠 R = Scalar I mPoly S 𝑠 R
23 8 mplring I V S 𝑠 R Ring I mPoly S 𝑠 R Ring
24 8 mpllmod I V S 𝑠 R Ring I mPoly S 𝑠 R LMod
25 eqid Base Scalar I mPoly S 𝑠 R = Base Scalar I mPoly S 𝑠 R
26 10 22 23 24 25 15 asclf I V S 𝑠 R Ring algSc I mPoly S 𝑠 R : Base Scalar I mPoly S 𝑠 R Base I mPoly S 𝑠 R
27 3 21 26 syl2anc φ algSc I mPoly S 𝑠 R : Base Scalar I mPoly S 𝑠 R Base I mPoly S 𝑠 R
28 1 subrgss R SubRing S R B
29 9 1 ressbas2 R B R = Base S 𝑠 R
30 5 28 29 3syl φ R = Base S 𝑠 R
31 ovexd φ S 𝑠 R V
32 8 3 31 mplsca φ S 𝑠 R = Scalar I mPoly S 𝑠 R
33 32 fveq2d φ Base S 𝑠 R = Base Scalar I mPoly S 𝑠 R
34 30 33 eqtrd φ R = Base Scalar I mPoly S 𝑠 R
35 6 34 eleqtrd φ X Base Scalar I mPoly S 𝑠 R
36 27 35 ffvelrnd φ algSc I mPoly S 𝑠 R X Base I mPoly S 𝑠 R
37 fnfvelrn I evalSub S R Fn Base I mPoly S 𝑠 R algSc I mPoly S 𝑠 R X Base I mPoly S 𝑠 R I evalSub S R algSc I mPoly S 𝑠 R X ran I evalSub S R
38 19 36 37 syl2anc φ I evalSub S R algSc I mPoly S 𝑠 R X ran I evalSub S R
39 11 38 eqeltrrd φ B I × X ran I evalSub S R
40 39 2 eleqtrrdi φ B I × X Q