Metamath Proof Explorer


Theorem mpfconst

Description: Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses mpfconst.b B=BaseS
mpfconst.q Q=ranIevalSubSR
mpfconst.i φIV
mpfconst.s φSCRing
mpfconst.r φRSubRingS
mpfconst.x φXR
Assertion mpfconst φBI×XQ

Proof

Step Hyp Ref Expression
1 mpfconst.b B=BaseS
2 mpfconst.q Q=ranIevalSubSR
3 mpfconst.i φIV
4 mpfconst.s φSCRing
5 mpfconst.r φRSubRingS
6 mpfconst.x φXR
7 eqid IevalSubSR=IevalSubSR
8 eqid ImPolyS𝑠R=ImPolyS𝑠R
9 eqid S𝑠R=S𝑠R
10 eqid algScImPolyS𝑠R=algScImPolyS𝑠R
11 7 8 9 1 10 3 4 5 6 evlssca φIevalSubSRalgScImPolyS𝑠RX=BI×X
12 eqid S𝑠BI=S𝑠BI
13 7 8 9 12 1 evlsrhm IVSCRingRSubRingSIevalSubSRImPolyS𝑠RRingHomS𝑠BI
14 3 4 5 13 syl3anc φIevalSubSRImPolyS𝑠RRingHomS𝑠BI
15 eqid BaseImPolyS𝑠R=BaseImPolyS𝑠R
16 eqid BaseS𝑠BI=BaseS𝑠BI
17 15 16 rhmf IevalSubSRImPolyS𝑠RRingHomS𝑠BIIevalSubSR:BaseImPolyS𝑠RBaseS𝑠BI
18 ffn IevalSubSR:BaseImPolyS𝑠RBaseS𝑠BIIevalSubSRFnBaseImPolyS𝑠R
19 14 17 18 3syl φIevalSubSRFnBaseImPolyS𝑠R
20 9 subrgring RSubRingSS𝑠RRing
21 5 20 syl φS𝑠RRing
22 eqid ScalarImPolyS𝑠R=ScalarImPolyS𝑠R
23 8 mplring IVS𝑠RRingImPolyS𝑠RRing
24 8 mpllmod IVS𝑠RRingImPolyS𝑠RLMod
25 eqid BaseScalarImPolyS𝑠R=BaseScalarImPolyS𝑠R
26 10 22 23 24 25 15 asclf IVS𝑠RRingalgScImPolyS𝑠R:BaseScalarImPolyS𝑠RBaseImPolyS𝑠R
27 3 21 26 syl2anc φalgScImPolyS𝑠R:BaseScalarImPolyS𝑠RBaseImPolyS𝑠R
28 1 subrgss RSubRingSRB
29 9 1 ressbas2 RBR=BaseS𝑠R
30 5 28 29 3syl φR=BaseS𝑠R
31 ovexd φS𝑠RV
32 8 3 31 mplsca φS𝑠R=ScalarImPolyS𝑠R
33 32 fveq2d φBaseS𝑠R=BaseScalarImPolyS𝑠R
34 30 33 eqtrd φR=BaseScalarImPolyS𝑠R
35 6 34 eleqtrd φXBaseScalarImPolyS𝑠R
36 27 35 ffvelcdmd φalgScImPolyS𝑠RXBaseImPolyS𝑠R
37 fnfvelrn IevalSubSRFnBaseImPolyS𝑠RalgScImPolyS𝑠RXBaseImPolyS𝑠RIevalSubSRalgScImPolyS𝑠RXranIevalSubSR
38 19 36 37 syl2anc φIevalSubSRalgScImPolyS𝑠RXranIevalSubSR
39 11 38 eqeltrrd φBI×XranIevalSubSR
40 39 2 eleqtrrdi φBI×XQ