Metamath Proof Explorer


Theorem mreclat

Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypothesis mreclatGOOD.i I=toIncC
Assertion mreclat CMooreXICLat

Proof

Step Hyp Ref Expression
1 mreclatGOOD.i I=toIncC
2 1 ipobas CMooreXC=BaseI
3 eqidd CMooreXlubI=lubI
4 eqidd CMooreXglbI=glbI
5 1 ipopos IPoset
6 5 a1i CMooreXIPoset
7 mreuniss CMooreXxCxX
8 eqid mrClsC=mrClsC
9 8 mrccl CMooreXxXmrClsCxC
10 7 9 syldan CMooreXxCmrClsCxC
11 simpl CMooreXxCCMooreX
12 simpr CMooreXxCxC
13 eqidd CMooreXxClubI=lubI
14 8 mrcval CMooreXxXmrClsCx=yC|xy
15 7 14 syldan CMooreXxCmrClsCx=yC|xy
16 1 11 12 13 15 ipolubdm CMooreXxCxdomlubImrClsCxC
17 10 16 mpbird CMooreXxCxdomlubI
18 ssv yV
19 int0 =V
20 18 19 sseqtrri y
21 simplr CMooreXxCx=yCx=
22 21 inteqd CMooreXxCx=yCx=
23 20 22 sseqtrrid CMooreXxCx=yCyx
24 23 rabeqcda CMooreXxCx=yC|yx=C
25 24 unieqd CMooreXxCx=yC|yx=C
26 mreuni CMooreXC=X
27 mre1cl CMooreXXC
28 26 27 eqeltrd CMooreXCC
29 28 ad2antrr CMooreXxCx=CC
30 25 29 eqeltrd CMooreXxCx=yC|yxC
31 mreintcl CMooreXxCxxC
32 unimax xCyC|yx=x
33 31 32 syl CMooreXxCxyC|yx=x
34 33 31 eqeltrd CMooreXxCxyC|yxC
35 34 3expa CMooreXxCxyC|yxC
36 30 35 pm2.61dane CMooreXxCyC|yxC
37 eqidd CMooreXxCglbI=glbI
38 eqidd CMooreXxCyC|yx=yC|yx
39 1 11 12 37 38 ipoglbdm CMooreXxCxdomglbIyC|yxC
40 36 39 mpbird CMooreXxCxdomglbI
41 2 3 4 6 17 40 isclatd CMooreXICLat