Metamath Proof Explorer


Theorem mrsubcv

Description: The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubffval.c C=mCNT
mrsubffval.v V=mVRT
mrsubffval.r R=mRExT
mrsubffval.s S=mRSubstT
Assertion mrsubcv F:ARAVXCVSF⟨“X”⟩=ifXAFX⟨“X”⟩

Proof

Step Hyp Ref Expression
1 mrsubffval.c C=mCNT
2 mrsubffval.v V=mVRT
3 mrsubffval.r R=mRExT
4 mrsubffval.s S=mRSubstT
5 simp3 F:ARAVXCVXCV
6 5 s1cld F:ARAVXCV⟨“X”⟩WordCV
7 elun XCVXCXV
8 elfvex XmCNTTV
9 8 1 eleq2s XCTV
10 elfvex XmVRTTV
11 10 2 eleq2s XVTV
12 9 11 jaoi XCXVTV
13 7 12 sylbi XCVTV
14 13 3ad2ant3 F:ARAVXCVTV
15 1 2 3 mrexval TVR=WordCV
16 14 15 syl F:ARAVXCVR=WordCV
17 6 16 eleqtrrd F:ARAVXCV⟨“X”⟩R
18 eqid freeMndCV=freeMndCV
19 1 2 3 4 18 mrsubval F:ARAV⟨“X”⟩RSF⟨“X”⟩=freeMndCVvCVifvAFv⟨“v”⟩⟨“X”⟩
20 17 19 syld3an3 F:ARAVXCVSF⟨“X”⟩=freeMndCVvCVifvAFv⟨“v”⟩⟨“X”⟩
21 simpl1 F:ARAVXCVvCVF:AR
22 21 ffvelcdmda F:ARAVXCVvCVvAFvR
23 16 ad2antrr F:ARAVXCVvCVvAR=WordCV
24 22 23 eleqtrd F:ARAVXCVvCVvAFvWordCV
25 simplr F:ARAVXCVvCV¬vAvCV
26 25 s1cld F:ARAVXCVvCV¬vA⟨“v”⟩WordCV
27 24 26 ifclda F:ARAVXCVvCVifvAFv⟨“v”⟩WordCV
28 27 fmpttd F:ARAVXCVvCVifvAFv⟨“v”⟩:CVWordCV
29 s1co XCVvCVifvAFv⟨“v”⟩:CVWordCVvCVifvAFv⟨“v”⟩⟨“X”⟩=⟨“vCVifvAFv⟨“v”⟩X”⟩
30 5 28 29 syl2anc F:ARAVXCVvCVifvAFv⟨“v”⟩⟨“X”⟩=⟨“vCVifvAFv⟨“v”⟩X”⟩
31 eleq1 v=XvAXA
32 fveq2 v=XFv=FX
33 s1eq v=X⟨“v”⟩=⟨“X”⟩
34 31 32 33 ifbieq12d v=XifvAFv⟨“v”⟩=ifXAFX⟨“X”⟩
35 eqid vCVifvAFv⟨“v”⟩=vCVifvAFv⟨“v”⟩
36 fvex FXV
37 s1cli ⟨“X”⟩WordV
38 37 elexi ⟨“X”⟩V
39 36 38 ifex ifXAFX⟨“X”⟩V
40 34 35 39 fvmpt XCVvCVifvAFv⟨“v”⟩X=ifXAFX⟨“X”⟩
41 40 3ad2ant3 F:ARAVXCVvCVifvAFv⟨“v”⟩X=ifXAFX⟨“X”⟩
42 41 s1eqd F:ARAVXCV⟨“vCVifvAFv⟨“v”⟩X”⟩=⟨“ifXAFX⟨“X”⟩”⟩
43 30 42 eqtrd F:ARAVXCVvCVifvAFv⟨“v”⟩⟨“X”⟩=⟨“ifXAFX⟨“X”⟩”⟩
44 43 oveq2d F:ARAVXCVfreeMndCVvCVifvAFv⟨“v”⟩⟨“X”⟩=freeMndCV⟨“ifXAFX⟨“X”⟩”⟩
45 28 5 ffvelcdmd F:ARAVXCVvCVifvAFv⟨“v”⟩XWordCV
46 41 45 eqeltrrd F:ARAVXCVifXAFX⟨“X”⟩WordCV
47 1 fvexi CV
48 2 fvexi VV
49 47 48 unex CVV
50 eqid BasefreeMndCV=BasefreeMndCV
51 18 50 frmdbas CVVBasefreeMndCV=WordCV
52 49 51 ax-mp BasefreeMndCV=WordCV
53 52 eqcomi WordCV=BasefreeMndCV
54 53 gsumws1 ifXAFX⟨“X”⟩WordCVfreeMndCV⟨“ifXAFX⟨“X”⟩”⟩=ifXAFX⟨“X”⟩
55 46 54 syl F:ARAVXCVfreeMndCV⟨“ifXAFX⟨“X”⟩”⟩=ifXAFX⟨“X”⟩
56 20 44 55 3eqtrd F:ARAVXCVSF⟨“X”⟩=ifXAFX⟨“X”⟩