| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulc1cncf.1 |  | 
						
							| 2 |  | mulcl |  | 
						
							| 3 | 2 1 | fmptd |  | 
						
							| 4 |  | simprr |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 |  | mulcn2 |  | 
						
							| 8 | 4 5 6 7 | syl3anc |  | 
						
							| 9 |  | fvoveq1 |  | 
						
							| 10 | 9 | breq1d |  | 
						
							| 11 | 10 | anbi1d |  | 
						
							| 12 |  | oveq1 |  | 
						
							| 13 | 12 | fvoveq1d |  | 
						
							| 14 | 13 | breq1d |  | 
						
							| 15 | 11 14 | imbi12d |  | 
						
							| 16 | 15 | ralbidv |  | 
						
							| 17 | 16 | rspcv |  | 
						
							| 18 | 17 | ad2antrr |  | 
						
							| 19 |  | subid |  | 
						
							| 20 | 19 | ad2antrr |  | 
						
							| 21 | 20 | abs00bd |  | 
						
							| 22 |  | simprll |  | 
						
							| 23 | 22 | rpgt0d |  | 
						
							| 24 | 21 23 | eqbrtrd |  | 
						
							| 25 | 24 | biantrurd |  | 
						
							| 26 |  | simprr |  | 
						
							| 27 |  | oveq2 |  | 
						
							| 28 |  | ovex |  | 
						
							| 29 | 27 1 28 | fvmpt |  | 
						
							| 30 | 26 29 | syl |  | 
						
							| 31 |  | simplrl |  | 
						
							| 32 |  | oveq2 |  | 
						
							| 33 |  | ovex |  | 
						
							| 34 | 32 1 33 | fvmpt |  | 
						
							| 35 | 31 34 | syl |  | 
						
							| 36 | 30 35 | oveq12d |  | 
						
							| 37 | 36 | fveq2d |  | 
						
							| 38 | 37 | breq1d |  | 
						
							| 39 | 25 38 | imbi12d |  | 
						
							| 40 | 39 | anassrs |  | 
						
							| 41 | 40 | ralbidva |  | 
						
							| 42 | 18 41 | sylibrd |  | 
						
							| 43 | 42 | anassrs |  | 
						
							| 44 | 43 | reximdva |  | 
						
							| 45 | 44 | rexlimdva |  | 
						
							| 46 | 8 45 | mpd |  | 
						
							| 47 | 46 | ralrimivva |  | 
						
							| 48 |  | ssid |  | 
						
							| 49 |  | elcncf2 |  | 
						
							| 50 | 48 48 49 | mp2an |  | 
						
							| 51 | 3 47 50 | sylanbrc |  |