Metamath Proof Explorer


Theorem mulc1cncf

Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis mulc1cncf.1 F=xAx
Assertion mulc1cncf AF:cn

Proof

Step Hyp Ref Expression
1 mulc1cncf.1 F=xAx
2 mulcl AxAx
3 2 1 fmptd AF:
4 simprr Ayz+z+
5 simpl Ayz+A
6 simprl Ayz+y
7 mulcn2 z+Ayt+w+vuvA<tuy<wvuAy<z
8 4 5 6 7 syl3anc Ayz+t+w+vuvA<tuy<wvuAy<z
9 fvoveq1 v=AvA=AA
10 9 breq1d v=AvA<tAA<t
11 10 anbi1d v=AvA<tuy<wAA<tuy<w
12 oveq1 v=Avu=Au
13 12 fvoveq1d v=AvuAy=AuAy
14 13 breq1d v=AvuAy<zAuAy<z
15 11 14 imbi12d v=AvA<tuy<wvuAy<zAA<tuy<wAuAy<z
16 15 ralbidv v=AuvA<tuy<wvuAy<zuAA<tuy<wAuAy<z
17 16 rspcv AvuvA<tuy<wvuAy<zuAA<tuy<wAuAy<z
18 17 ad2antrr Ayz+t+w+vuvA<tuy<wvuAy<zuAA<tuy<wAuAy<z
19 subid AAA=0
20 19 ad2antrr Ayz+t+w+uAA=0
21 20 abs00bd Ayz+t+w+uAA=0
22 simprll Ayz+t+w+ut+
23 22 rpgt0d Ayz+t+w+u0<t
24 21 23 eqbrtrd Ayz+t+w+uAA<t
25 24 biantrurd Ayz+t+w+uuy<wAA<tuy<w
26 simprr Ayz+t+w+uu
27 oveq2 x=uAx=Au
28 ovex AuV
29 27 1 28 fvmpt uFu=Au
30 26 29 syl Ayz+t+w+uFu=Au
31 simplrl Ayz+t+w+uy
32 oveq2 x=yAx=Ay
33 ovex AyV
34 32 1 33 fvmpt yFy=Ay
35 31 34 syl Ayz+t+w+uFy=Ay
36 30 35 oveq12d Ayz+t+w+uFuFy=AuAy
37 36 fveq2d Ayz+t+w+uFuFy=AuAy
38 37 breq1d Ayz+t+w+uFuFy<zAuAy<z
39 25 38 imbi12d Ayz+t+w+uuy<wFuFy<zAA<tuy<wAuAy<z
40 39 anassrs Ayz+t+w+uuy<wFuFy<zAA<tuy<wAuAy<z
41 40 ralbidva Ayz+t+w+uuy<wFuFy<zuAA<tuy<wAuAy<z
42 18 41 sylibrd Ayz+t+w+vuvA<tuy<wvuAy<zuuy<wFuFy<z
43 42 anassrs Ayz+t+w+vuvA<tuy<wvuAy<zuuy<wFuFy<z
44 43 reximdva Ayz+t+w+vuvA<tuy<wvuAy<zw+uuy<wFuFy<z
45 44 rexlimdva Ayz+t+w+vuvA<tuy<wvuAy<zw+uuy<wFuFy<z
46 8 45 mpd Ayz+w+uuy<wFuFy<z
47 46 ralrimivva Ayz+w+uuy<wFuFy<z
48 ssid
49 elcncf2 F:cnF:yz+w+uuy<wFuFy<z
50 48 48 49 mp2an F:cnF:yz+w+uuy<wFuFy<z
51 3 47 50 sylanbrc AF:cn