Metamath Proof Explorer


Theorem mulgass2

Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses mulgass2.b B=BaseR
mulgass2.m ·˙=R
mulgass2.t ×˙=R
Assertion mulgass2 RRingNXBYBN·˙X×˙Y=N·˙X×˙Y

Proof

Step Hyp Ref Expression
1 mulgass2.b B=BaseR
2 mulgass2.m ·˙=R
3 mulgass2.t ×˙=R
4 oveq1 x=0x·˙X=0·˙X
5 4 oveq1d x=0x·˙X×˙Y=0·˙X×˙Y
6 oveq1 x=0x·˙X×˙Y=0·˙X×˙Y
7 5 6 eqeq12d x=0x·˙X×˙Y=x·˙X×˙Y0·˙X×˙Y=0·˙X×˙Y
8 oveq1 x=yx·˙X=y·˙X
9 8 oveq1d x=yx·˙X×˙Y=y·˙X×˙Y
10 oveq1 x=yx·˙X×˙Y=y·˙X×˙Y
11 9 10 eqeq12d x=yx·˙X×˙Y=x·˙X×˙Yy·˙X×˙Y=y·˙X×˙Y
12 oveq1 x=y+1x·˙X=y+1·˙X
13 12 oveq1d x=y+1x·˙X×˙Y=y+1·˙X×˙Y
14 oveq1 x=y+1x·˙X×˙Y=y+1·˙X×˙Y
15 13 14 eqeq12d x=y+1x·˙X×˙Y=x·˙X×˙Yy+1·˙X×˙Y=y+1·˙X×˙Y
16 oveq1 x=yx·˙X=y·˙X
17 16 oveq1d x=yx·˙X×˙Y=y·˙X×˙Y
18 oveq1 x=yx·˙X×˙Y=y·˙X×˙Y
19 17 18 eqeq12d x=yx·˙X×˙Y=x·˙X×˙Yy·˙X×˙Y=y·˙X×˙Y
20 oveq1 x=Nx·˙X=N·˙X
21 20 oveq1d x=Nx·˙X×˙Y=N·˙X×˙Y
22 oveq1 x=Nx·˙X×˙Y=N·˙X×˙Y
23 21 22 eqeq12d x=Nx·˙X×˙Y=x·˙X×˙YN·˙X×˙Y=N·˙X×˙Y
24 eqid 0R=0R
25 1 3 24 ringlz RRingYB0R×˙Y=0R
26 25 3adant3 RRingYBXB0R×˙Y=0R
27 simp3 RRingYBXBXB
28 1 24 2 mulg0 XB0·˙X=0R
29 27 28 syl RRingYBXB0·˙X=0R
30 29 oveq1d RRingYBXB0·˙X×˙Y=0R×˙Y
31 1 3 ringcl RRingXBYBX×˙YB
32 31 3com23 RRingYBXBX×˙YB
33 1 24 2 mulg0 X×˙YB0·˙X×˙Y=0R
34 32 33 syl RRingYBXB0·˙X×˙Y=0R
35 26 30 34 3eqtr4d RRingYBXB0·˙X×˙Y=0·˙X×˙Y
36 oveq1 y·˙X×˙Y=y·˙X×˙Yy·˙X×˙Y+RX×˙Y=y·˙X×˙Y+RX×˙Y
37 simpl1 RRingYBXBy0RRing
38 ringgrp RRingRGrp
39 37 38 syl RRingYBXBy0RGrp
40 nn0z y0y
41 40 adantl RRingYBXBy0y
42 27 adantr RRingYBXBy0XB
43 eqid +R=+R
44 1 2 43 mulgp1 RGrpyXBy+1·˙X=y·˙X+RX
45 39 41 42 44 syl3anc RRingYBXBy0y+1·˙X=y·˙X+RX
46 45 oveq1d RRingYBXBy0y+1·˙X×˙Y=y·˙X+RX×˙Y
47 38 3ad2ant1 RRingYBXBRGrp
48 47 adantr RRingYBXBy0RGrp
49 1 2 mulgcl RGrpyXBy·˙XB
50 48 41 42 49 syl3anc RRingYBXBy0y·˙XB
51 simpl2 RRingYBXBy0YB
52 1 43 3 ringdir RRingy·˙XBXBYBy·˙X+RX×˙Y=y·˙X×˙Y+RX×˙Y
53 37 50 42 51 52 syl13anc RRingYBXBy0y·˙X+RX×˙Y=y·˙X×˙Y+RX×˙Y
54 46 53 eqtrd RRingYBXBy0y+1·˙X×˙Y=y·˙X×˙Y+RX×˙Y
55 32 adantr RRingYBXBy0X×˙YB
56 1 2 43 mulgp1 RGrpyX×˙YBy+1·˙X×˙Y=y·˙X×˙Y+RX×˙Y
57 39 41 55 56 syl3anc RRingYBXBy0y+1·˙X×˙Y=y·˙X×˙Y+RX×˙Y
58 54 57 eqeq12d RRingYBXBy0y+1·˙X×˙Y=y+1·˙X×˙Yy·˙X×˙Y+RX×˙Y=y·˙X×˙Y+RX×˙Y
59 36 58 imbitrrid RRingYBXBy0y·˙X×˙Y=y·˙X×˙Yy+1·˙X×˙Y=y+1·˙X×˙Y
60 59 ex RRingYBXBy0y·˙X×˙Y=y·˙X×˙Yy+1·˙X×˙Y=y+1·˙X×˙Y
61 fveq2 y·˙X×˙Y=y·˙X×˙YinvgRy·˙X×˙Y=invgRy·˙X×˙Y
62 47 adantr RRingYBXByRGrp
63 nnz yy
64 63 adantl RRingYBXByy
65 27 adantr RRingYBXByXB
66 eqid invgR=invgR
67 1 2 66 mulgneg RGrpyXBy·˙X=invgRy·˙X
68 62 64 65 67 syl3anc RRingYBXByy·˙X=invgRy·˙X
69 68 oveq1d RRingYBXByy·˙X×˙Y=invgRy·˙X×˙Y
70 simpl1 RRingYBXByRRing
71 62 64 65 49 syl3anc RRingYBXByy·˙XB
72 simpl2 RRingYBXByYB
73 1 3 66 70 71 72 ringmneg1 RRingYBXByinvgRy·˙X×˙Y=invgRy·˙X×˙Y
74 69 73 eqtrd RRingYBXByy·˙X×˙Y=invgRy·˙X×˙Y
75 32 adantr RRingYBXByX×˙YB
76 1 2 66 mulgneg RGrpyX×˙YBy·˙X×˙Y=invgRy·˙X×˙Y
77 62 64 75 76 syl3anc RRingYBXByy·˙X×˙Y=invgRy·˙X×˙Y
78 74 77 eqeq12d RRingYBXByy·˙X×˙Y=y·˙X×˙YinvgRy·˙X×˙Y=invgRy·˙X×˙Y
79 61 78 imbitrrid RRingYBXByy·˙X×˙Y=y·˙X×˙Yy·˙X×˙Y=y·˙X×˙Y
80 79 ex RRingYBXByy·˙X×˙Y=y·˙X×˙Yy·˙X×˙Y=y·˙X×˙Y
81 7 11 15 19 23 35 60 80 zindd RRingYBXBNN·˙X×˙Y=N·˙X×˙Y
82 81 3exp RRingYBXBNN·˙X×˙Y=N·˙X×˙Y
83 82 com24 RRingNXBYBN·˙X×˙Y=N·˙X×˙Y
84 83 3imp2 RRingNXBYBN·˙X×˙Y=N·˙X×˙Y