| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnnsubcl.b |
|
| 2 |
|
mulgnnsubcl.t |
|
| 3 |
|
mulgnnsubcl.p |
|
| 4 |
|
mulgnnsubcl.g |
|
| 5 |
|
mulgnnsubcl.s |
|
| 6 |
|
mulgnnsubcl.c |
|
| 7 |
|
mulgnn0subcl.z |
|
| 8 |
|
mulgnn0subcl.c |
|
| 9 |
|
mulgsubcl.i |
|
| 10 |
|
mulgsubcl.c |
|
| 11 |
1 2 3 4 5 6 7 8
|
mulgnn0subcl |
|
| 12 |
11
|
3expa |
|
| 13 |
12
|
an32s |
|
| 14 |
13
|
3adantl2 |
|
| 15 |
|
simp2 |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
zcnd |
|
| 18 |
17
|
negnegd |
|
| 19 |
18
|
oveq1d |
|
| 20 |
|
id |
|
| 21 |
5
|
3ad2ant1 |
|
| 22 |
|
simp3 |
|
| 23 |
21 22
|
sseldd |
|
| 24 |
1 2 9
|
mulgnegnn |
|
| 25 |
20 23 24
|
syl2anr |
|
| 26 |
19 25
|
eqtr3d |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
eleq1d |
|
| 29 |
10
|
ralrimiva |
|
| 30 |
29
|
3ad2ant1 |
|
| 31 |
30
|
adantr |
|
| 32 |
1 2 3 4 5 6
|
mulgnnsubcl |
|
| 33 |
32
|
3expa |
|
| 34 |
33
|
an32s |
|
| 35 |
34
|
3adantl2 |
|
| 36 |
28 31 35
|
rspcdva |
|
| 37 |
26 36
|
eqeltrd |
|
| 38 |
37
|
adantrl |
|
| 39 |
|
elznn0nn |
|
| 40 |
15 39
|
sylib |
|
| 41 |
14 38 40
|
mpjaodan |
|