Metamath Proof Explorer


Theorem mulgt0b2d

Description: Biconditional, deductive form of mulgt0 . The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi does not have a commuted form. (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses mulgt0b2d.a φA
mulgt0b2d.b φB
mulgt0b2d.1 φ0<A
Assertion mulgt0b2d φ0<B0<AB

Proof

Step Hyp Ref Expression
1 mulgt0b2d.a φA
2 mulgt0b2d.b φB
3 mulgt0b2d.1 φ0<A
4 1 adantr φ0<BA
5 2 adantr φ0<BB
6 3 adantr φ0<B0<A
7 simpr φ0<B0<B
8 4 5 6 7 mulgt0d φ0<B0<AB
9 8 ex φ0<B0<AB
10 1 adantr φAB0-1<0A
11 1re 1
12 rernegcl 10-1
13 11 12 mp1i φ0-1
14 2 13 remulcld φB0-1
15 14 adantr φAB0-1<0B0-1
16 3 adantr φAB0-1<00<A
17 1 recnd φA
18 2 recnd φB
19 13 recnd φ0-1
20 17 18 19 mulassd φAB0-1=AB0-1
21 20 breq1d φAB0-1<0AB0-1<0
22 21 biimpa φAB0-1<0AB0-1<0
23 10 15 16 22 mulgt0con2d φAB0-1<0B0-1<0
24 23 ex φAB0-1<0B0-1<0
25 1 2 remulcld φAB
26 relt0neg2 AB0<AB0-AB<0
27 25 26 syl φ0<AB0-AB<0
28 1red φ1
29 25 28 remulneg2d φAB0-1=0-AB1
30 ax-1rid ABAB1=AB
31 25 30 syl φAB1=AB
32 31 oveq2d φ0-AB1=0-AB
33 29 32 eqtrd φAB0-1=0-AB
34 33 breq1d φAB0-1<00-AB<0
35 27 34 bitr4d φ0<ABAB0-1<0
36 relt0neg2 B0<B0-B<0
37 2 36 syl φ0<B0-B<0
38 2 28 remulneg2d φB0-1=0-B1
39 ax-1rid BB1=B
40 2 39 syl φB1=B
41 40 oveq2d φ0-B1=0-B
42 38 41 eqtrd φB0-1=0-B
43 42 breq1d φB0-1<00-B<0
44 37 43 bitr4d φ0<BB0-1<0
45 24 35 44 3imtr4d φ0<AB0<B
46 9 45 impbid φ0<B0<AB