Description: Biconditional, deductive form of mulgt0 . The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi does not have a commuted form. (Contributed by SN, 26-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgt0b2d.a | |
|
mulgt0b2d.b | |
||
mulgt0b2d.1 | |
||
Assertion | mulgt0b2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgt0b2d.a | |
|
2 | mulgt0b2d.b | |
|
3 | mulgt0b2d.1 | |
|
4 | 1 | adantr | |
5 | 2 | adantr | |
6 | 3 | adantr | |
7 | simpr | |
|
8 | 4 5 6 7 | mulgt0d | |
9 | 8 | ex | |
10 | 1 | adantr | |
11 | 1re | |
|
12 | rernegcl | |
|
13 | 11 12 | mp1i | |
14 | 2 13 | remulcld | |
15 | 14 | adantr | |
16 | 3 | adantr | |
17 | 1 | recnd | |
18 | 2 | recnd | |
19 | 13 | recnd | |
20 | 17 18 19 | mulassd | |
21 | 20 | breq1d | |
22 | 21 | biimpa | |
23 | 10 15 16 22 | mulgt0con2d | |
24 | 23 | ex | |
25 | 1 2 | remulcld | |
26 | relt0neg2 | |
|
27 | 25 26 | syl | |
28 | 1red | |
|
29 | 25 28 | remulneg2d | |
30 | ax-1rid | |
|
31 | 25 30 | syl | |
32 | 31 | oveq2d | |
33 | 29 32 | eqtrd | |
34 | 33 | breq1d | |
35 | 27 34 | bitr4d | |
36 | relt0neg2 | |
|
37 | 2 36 | syl | |
38 | 2 28 | remulneg2d | |
39 | ax-1rid | |
|
40 | 2 39 | syl | |
41 | 40 | oveq2d | |
42 | 38 41 | eqtrd | |
43 | 42 | breq1d | |
44 | 37 43 | bitr4d | |
45 | 24 35 44 | 3imtr4d | |
46 | 9 45 | impbid | |