Step |
Hyp |
Ref |
Expression |
1 |
|
musumsum.1 |
|
2 |
|
musumsum.2 |
|
3 |
|
musumsum.3 |
|
4 |
|
musumsum.4 |
|
5 |
|
musumsum.5 |
|
6 |
3
|
sselda |
|
7 |
|
musum |
|
8 |
6 7
|
syl |
|
9 |
8
|
oveq1d |
|
10 |
|
fzfid |
|
11 |
|
dvdsssfz1 |
|
12 |
6 11
|
syl |
|
13 |
10 12
|
ssfid |
|
14 |
|
elrabi |
|
15 |
|
mucl |
|
16 |
14 15
|
syl |
|
17 |
16
|
zcnd |
|
18 |
17
|
adantl |
|
19 |
13 5 18
|
fsummulc1 |
|
20 |
|
ovif |
|
21 |
|
velsn |
|
22 |
21
|
bicomi |
|
23 |
22
|
a1i |
|
24 |
|
mulid2 |
|
25 |
|
mul02 |
|
26 |
23 24 25
|
ifbieq12d |
|
27 |
5 26
|
syl |
|
28 |
20 27
|
eqtrid |
|
29 |
9 19 28
|
3eqtr3d |
|
30 |
29
|
sumeq2dv |
|
31 |
4
|
snssd |
|
32 |
31
|
sselda |
|
33 |
32 5
|
syldan |
|
34 |
33
|
ralrimiva |
|
35 |
2
|
olcd |
|
36 |
|
sumss2 |
|
37 |
31 34 35 36
|
syl21anc |
|
38 |
1
|
eleq1d |
|
39 |
5
|
ralrimiva |
|
40 |
38 39 4
|
rspcdva |
|
41 |
1
|
sumsn |
|
42 |
4 40 41
|
syl2anc |
|
43 |
30 37 42
|
3eqtr2d |
|