Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | musumsum.1 | |
|
musumsum.2 | |
||
musumsum.3 | |
||
musumsum.4 | |
||
musumsum.5 | |
||
Assertion | musumsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | musumsum.1 | |
|
2 | musumsum.2 | |
|
3 | musumsum.3 | |
|
4 | musumsum.4 | |
|
5 | musumsum.5 | |
|
6 | 3 | sselda | |
7 | musum | |
|
8 | 6 7 | syl | |
9 | 8 | oveq1d | |
10 | fzfid | |
|
11 | dvdsssfz1 | |
|
12 | 6 11 | syl | |
13 | 10 12 | ssfid | |
14 | elrabi | |
|
15 | mucl | |
|
16 | 14 15 | syl | |
17 | 16 | zcnd | |
18 | 17 | adantl | |
19 | 13 5 18 | fsummulc1 | |
20 | ovif | |
|
21 | velsn | |
|
22 | 21 | bicomi | |
23 | 22 | a1i | |
24 | mullid | |
|
25 | mul02 | |
|
26 | 23 24 25 | ifbieq12d | |
27 | 5 26 | syl | |
28 | 20 27 | eqtrid | |
29 | 9 19 28 | 3eqtr3d | |
30 | 29 | sumeq2dv | |
31 | 4 | snssd | |
32 | 31 | sselda | |
33 | 32 5 | syldan | |
34 | 33 | ralrimiva | |
35 | 2 | olcd | |
36 | sumss2 | |
|
37 | 31 34 35 36 | syl21anc | |
38 | 1 | eleq1d | |
39 | 5 | ralrimiva | |
40 | 38 39 4 | rspcdva | |
41 | 1 | sumsn | |
42 | 4 40 41 | syl2anc | |
43 | 30 37 42 | 3eqtr2d | |