Metamath Proof Explorer


Theorem musumsum

Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses musumsum.1 m=1B=C
musumsum.2 φAFin
musumsum.3 φA
musumsum.4 φ1A
musumsum.5 φmAB
Assertion musumsum φmAkn|nmμkB=C

Proof

Step Hyp Ref Expression
1 musumsum.1 m=1B=C
2 musumsum.2 φAFin
3 musumsum.3 φA
4 musumsum.4 φ1A
5 musumsum.5 φmAB
6 3 sselda φmAm
7 musum mkn|nmμk=ifm=110
8 6 7 syl φmAkn|nmμk=ifm=110
9 8 oveq1d φmAkn|nmμkB=ifm=110B
10 fzfid φmA1mFin
11 dvdsssfz1 mn|nm1m
12 6 11 syl φmAn|nm1m
13 10 12 ssfid φmAn|nmFin
14 elrabi kn|nmk
15 mucl kμk
16 14 15 syl kn|nmμk
17 16 zcnd kn|nmμk
18 17 adantl φmAkn|nmμk
19 13 5 18 fsummulc1 φmAkn|nmμkB=kn|nmμkB
20 ovif ifm=110B=ifm=11B0B
21 velsn m1m=1
22 21 bicomi m=1m1
23 22 a1i Bm=1m1
24 mullid B1B=B
25 mul02 B0B=0
26 23 24 25 ifbieq12d Bifm=11B0B=ifm1B0
27 5 26 syl φmAifm=11B0B=ifm1B0
28 20 27 eqtrid φmAifm=110B=ifm1B0
29 9 19 28 3eqtr3d φmAkn|nmμkB=ifm1B0
30 29 sumeq2dv φmAkn|nmμkB=mAifm1B0
31 4 snssd φ1A
32 31 sselda φm1mA
33 32 5 syldan φm1B
34 33 ralrimiva φm1B
35 2 olcd φA1AFin
36 sumss2 1Am1BA1AFinm1B=mAifm1B0
37 31 34 35 36 syl21anc φm1B=mAifm1B0
38 1 eleq1d m=1BC
39 5 ralrimiva φmAB
40 38 39 4 rspcdva φC
41 1 sumsn 1ACm1B=C
42 4 40 41 syl2anc φm1B=C
43 30 37 42 3eqtr2d φmAkn|nmμkB=C