Metamath Proof Explorer


Theorem nn0rppwr

Description: If A and B are relatively prime, then so are A ^ N and B ^ N . rppwr extended to nonnegative integers. (Contributed by Steven Nguyen, 4-Apr-2023)

Ref Expression
Assertion nn0rppwr A 0 B 0 N 0 A gcd B = 1 A N gcd B N = 1

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 elnn0 A 0 A A = 0
3 elnn0 B 0 B B = 0
4 rppwr A B N A gcd B = 1 A N gcd B N = 1
5 4 3expia A B N A gcd B = 1 A N gcd B N = 1
6 simp1l A = 0 B N A gcd B = 1 A = 0
7 6 oveq1d A = 0 B N A gcd B = 1 A N = 0 N
8 0exp N 0 N = 0
9 8 3ad2ant2 A = 0 B N A gcd B = 1 0 N = 0
10 7 9 eqtrd A = 0 B N A gcd B = 1 A N = 0
11 6 oveq1d A = 0 B N A gcd B = 1 A gcd B = 0 gcd B
12 simp3 A = 0 B N A gcd B = 1 A gcd B = 1
13 simp1r A = 0 B N A gcd B = 1 B
14 nnz B B
15 gcd0id B 0 gcd B = B
16 14 15 syl B 0 gcd B = B
17 nnre B B
18 0red B 0
19 nngt0 B 0 < B
20 18 17 19 ltled B 0 B
21 17 20 absidd B B = B
22 16 21 eqtrd B 0 gcd B = B
23 13 22 syl A = 0 B N A gcd B = 1 0 gcd B = B
24 11 12 23 3eqtr3rd A = 0 B N A gcd B = 1 B = 1
25 24 oveq1d A = 0 B N A gcd B = 1 B N = 1 N
26 nnz N N
27 26 3ad2ant2 A = 0 B N A gcd B = 1 N
28 1exp N 1 N = 1
29 27 28 syl A = 0 B N A gcd B = 1 1 N = 1
30 25 29 eqtrd A = 0 B N A gcd B = 1 B N = 1
31 10 30 oveq12d A = 0 B N A gcd B = 1 A N gcd B N = 0 gcd 1
32 1z 1
33 gcd0id 1 0 gcd 1 = 1
34 32 33 ax-mp 0 gcd 1 = 1
35 abs1 1 = 1
36 34 35 eqtri 0 gcd 1 = 1
37 31 36 syl6eq A = 0 B N A gcd B = 1 A N gcd B N = 1
38 37 3exp A = 0 B N A gcd B = 1 A N gcd B N = 1
39 simp1r A B = 0 N A gcd B = 1 B = 0
40 39 oveq2d A B = 0 N A gcd B = 1 A gcd B = A gcd 0
41 simp3 A B = 0 N A gcd B = 1 A gcd B = 1
42 simp1l A B = 0 N A gcd B = 1 A
43 42 nnnn0d A B = 0 N A gcd B = 1 A 0
44 nn0gcdid0 A 0 A gcd 0 = A
45 43 44 syl A B = 0 N A gcd B = 1 A gcd 0 = A
46 40 41 45 3eqtr3rd A B = 0 N A gcd B = 1 A = 1
47 46 oveq1d A B = 0 N A gcd B = 1 A N = 1 N
48 26 3ad2ant2 A B = 0 N A gcd B = 1 N
49 48 28 syl A B = 0 N A gcd B = 1 1 N = 1
50 47 49 eqtrd A B = 0 N A gcd B = 1 A N = 1
51 39 oveq1d A B = 0 N A gcd B = 1 B N = 0 N
52 8 3ad2ant2 A B = 0 N A gcd B = 1 0 N = 0
53 51 52 eqtrd A B = 0 N A gcd B = 1 B N = 0
54 50 53 oveq12d A B = 0 N A gcd B = 1 A N gcd B N = 1 gcd 0
55 1nn0 1 0
56 nn0gcdid0 1 0 1 gcd 0 = 1
57 55 56 mp1i A B = 0 N A gcd B = 1 1 gcd 0 = 1
58 54 57 eqtrd A B = 0 N A gcd B = 1 A N gcd B N = 1
59 58 3exp A B = 0 N A gcd B = 1 A N gcd B N = 1
60 oveq12 A = 0 B = 0 A gcd B = 0 gcd 0
61 gcd0val 0 gcd 0 = 0
62 0ne1 0 1
63 61 62 eqnetri 0 gcd 0 1
64 63 a1i A = 0 B = 0 0 gcd 0 1
65 60 64 eqnetrd A = 0 B = 0 A gcd B 1
66 65 neneqd A = 0 B = 0 ¬ A gcd B = 1
67 66 pm2.21d A = 0 B = 0 A gcd B = 1 A N gcd B N = 1
68 67 a1d A = 0 B = 0 N A gcd B = 1 A N gcd B N = 1
69 5 38 59 68 ccase A A = 0 B B = 0 N A gcd B = 1 A N gcd B N = 1
70 2 3 69 syl2anb A 0 B 0 N A gcd B = 1 A N gcd B N = 1
71 oveq2 N = 0 A N = A 0
72 71 3ad2ant3 A 0 B 0 N = 0 A N = A 0
73 nn0cn A 0 A
74 73 3ad2ant1 A 0 B 0 N = 0 A
75 74 exp0d A 0 B 0 N = 0 A 0 = 1
76 72 75 eqtrd A 0 B 0 N = 0 A N = 1
77 oveq2 N = 0 B N = B 0
78 77 3ad2ant3 A 0 B 0 N = 0 B N = B 0
79 nn0cn B 0 B
80 79 3ad2ant2 A 0 B 0 N = 0 B
81 80 exp0d A 0 B 0 N = 0 B 0 = 1
82 78 81 eqtrd A 0 B 0 N = 0 B N = 1
83 76 82 oveq12d A 0 B 0 N = 0 A N gcd B N = 1 gcd 1
84 1gcd 1 1 gcd 1 = 1
85 32 84 mp1i A 0 B 0 N = 0 1 gcd 1 = 1
86 83 85 eqtrd A 0 B 0 N = 0 A N gcd B N = 1
87 86 3expia A 0 B 0 N = 0 A N gcd B N = 1
88 87 a1dd A 0 B 0 N = 0 A gcd B = 1 A N gcd B N = 1
89 70 88 jaod A 0 B 0 N N = 0 A gcd B = 1 A N gcd B N = 1
90 89 3impia A 0 B 0 N N = 0 A gcd B = 1 A N gcd B N = 1
91 1 90 syl3an3b A 0 B 0 N 0 A gcd B = 1 A N gcd B N = 1