Metamath Proof Explorer


Theorem nn0rppwr

Description: If A and B are relatively prime, then so are A ^ N and B ^ N . rppwr extended to nonnegative integers. Less general than rpexp12i . (Contributed by Steven Nguyen, 4-Apr-2023)

Ref Expression
Assertion nn0rppwr A0B0N0AgcdB=1ANgcdBN=1

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 elnn0 A0AA=0
3 elnn0 B0BB=0
4 rppwr ABNAgcdB=1ANgcdBN=1
5 4 3expia ABNAgcdB=1ANgcdBN=1
6 simp1l A=0BNAgcdB=1A=0
7 6 oveq1d A=0BNAgcdB=1AN=0N
8 0exp N0N=0
9 8 3ad2ant2 A=0BNAgcdB=10N=0
10 7 9 eqtrd A=0BNAgcdB=1AN=0
11 6 oveq1d A=0BNAgcdB=1AgcdB=0gcdB
12 simp3 A=0BNAgcdB=1AgcdB=1
13 simp1r A=0BNAgcdB=1B
14 nnz BB
15 gcd0id B0gcdB=B
16 14 15 syl B0gcdB=B
17 nnre BB
18 0red B0
19 nngt0 B0<B
20 18 17 19 ltled B0B
21 17 20 absidd BB=B
22 16 21 eqtrd B0gcdB=B
23 13 22 syl A=0BNAgcdB=10gcdB=B
24 11 12 23 3eqtr3rd A=0BNAgcdB=1B=1
25 24 oveq1d A=0BNAgcdB=1BN=1N
26 nnz NN
27 26 3ad2ant2 A=0BNAgcdB=1N
28 1exp N1N=1
29 27 28 syl A=0BNAgcdB=11N=1
30 25 29 eqtrd A=0BNAgcdB=1BN=1
31 10 30 oveq12d A=0BNAgcdB=1ANgcdBN=0gcd1
32 1z 1
33 gcd0id 10gcd1=1
34 32 33 ax-mp 0gcd1=1
35 abs1 1=1
36 34 35 eqtri 0gcd1=1
37 31 36 eqtrdi A=0BNAgcdB=1ANgcdBN=1
38 37 3exp A=0BNAgcdB=1ANgcdBN=1
39 simp1r AB=0NAgcdB=1B=0
40 39 oveq2d AB=0NAgcdB=1AgcdB=Agcd0
41 simp3 AB=0NAgcdB=1AgcdB=1
42 simp1l AB=0NAgcdB=1A
43 42 nnnn0d AB=0NAgcdB=1A0
44 nn0gcdid0 A0Agcd0=A
45 43 44 syl AB=0NAgcdB=1Agcd0=A
46 40 41 45 3eqtr3rd AB=0NAgcdB=1A=1
47 46 oveq1d AB=0NAgcdB=1AN=1N
48 26 3ad2ant2 AB=0NAgcdB=1N
49 48 28 syl AB=0NAgcdB=11N=1
50 47 49 eqtrd AB=0NAgcdB=1AN=1
51 39 oveq1d AB=0NAgcdB=1BN=0N
52 8 3ad2ant2 AB=0NAgcdB=10N=0
53 51 52 eqtrd AB=0NAgcdB=1BN=0
54 50 53 oveq12d AB=0NAgcdB=1ANgcdBN=1gcd0
55 1nn0 10
56 nn0gcdid0 101gcd0=1
57 55 56 mp1i AB=0NAgcdB=11gcd0=1
58 54 57 eqtrd AB=0NAgcdB=1ANgcdBN=1
59 58 3exp AB=0NAgcdB=1ANgcdBN=1
60 oveq12 A=0B=0AgcdB=0gcd0
61 gcd0val 0gcd0=0
62 0ne1 01
63 61 62 eqnetri 0gcd01
64 63 a1i A=0B=00gcd01
65 60 64 eqnetrd A=0B=0AgcdB1
66 65 neneqd A=0B=0¬AgcdB=1
67 66 pm2.21d A=0B=0AgcdB=1ANgcdBN=1
68 67 a1d A=0B=0NAgcdB=1ANgcdBN=1
69 5 38 59 68 ccase AA=0BB=0NAgcdB=1ANgcdBN=1
70 2 3 69 syl2anb A0B0NAgcdB=1ANgcdBN=1
71 oveq2 N=0AN=A0
72 71 3ad2ant3 A0B0N=0AN=A0
73 nn0cn A0A
74 73 3ad2ant1 A0B0N=0A
75 74 exp0d A0B0N=0A0=1
76 72 75 eqtrd A0B0N=0AN=1
77 oveq2 N=0BN=B0
78 77 3ad2ant3 A0B0N=0BN=B0
79 nn0cn B0B
80 79 3ad2ant2 A0B0N=0B
81 80 exp0d A0B0N=0B0=1
82 78 81 eqtrd A0B0N=0BN=1
83 76 82 oveq12d A0B0N=0ANgcdBN=1gcd1
84 1gcd 11gcd1=1
85 32 84 mp1i A0B0N=01gcd1=1
86 83 85 eqtrd A0B0N=0ANgcdBN=1
87 86 3expia A0B0N=0ANgcdBN=1
88 87 a1dd A0B0N=0AgcdB=1ANgcdBN=1
89 70 88 jaod A0B0NN=0AgcdB=1ANgcdBN=1
90 89 3impia A0B0NN=0AgcdB=1ANgcdBN=1
91 1 90 syl3an3b A0B0N0AgcdB=1ANgcdBN=1