Metamath Proof Explorer


Theorem nnlog2ge0lt1

Description: A positive integer is 1 iff its binary logarithm is between 0 and 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion nnlog2ge0lt1 NN=10log2Nlog2N<1

Proof

Step Hyp Ref Expression
1 0le0 00
2 2cn 2
3 2ne0 20
4 1ne2 12
5 4 necomi 21
6 logb1 22021log21=0
7 2 3 5 6 mp3an log21=0
8 1 7 breqtrri 0log21
9 0lt1 0<1
10 7 9 eqbrtri log21<1
11 8 10 pm3.2i 0log21log21<1
12 oveq2 N=1log2N=log21
13 12 breq2d N=10log2N0log21
14 12 breq1d N=1log2N<1log21<1
15 13 14 anbi12d N=10log2Nlog2N<10log21log21<1
16 11 15 mpbiri N=10log2Nlog2N<1
17 2z 2
18 uzid 222
19 17 18 ax-mp 22
20 19 a1i N22
21 nnrp NN+
22 logbge0b 22N+0log2N1N
23 20 21 22 syl2anc N0log2N1N
24 logblt1b 22N+log2N<1N<2
25 20 21 24 syl2anc Nlog2N<1N<2
26 23 25 anbi12d N0log2Nlog2N<11NN<2
27 df-2 2=1+1
28 27 breq2i N<2N<1+1
29 28 a1i NN<2N<1+1
30 29 anbi2d N1NN<21NN<1+1
31 nnre NN
32 1zzd N1
33 flbi N1N=11NN<1+1
34 31 32 33 syl2anc NN=11NN<1+1
35 30 34 bitr4d N1NN<2N=1
36 nnz NN
37 flid NN=N
38 36 37 syl NN=N
39 38 eqcomd NN=N
40 39 adantr NN=1N=N
41 simpr NN=1N=1
42 40 41 eqtrd NN=1N=1
43 42 ex NN=1N=1
44 35 43 sylbid N1NN<2N=1
45 26 44 sylbid N0log2Nlog2N<1N=1
46 16 45 impbid2 NN=10log2Nlog2N<1