Metamath Proof Explorer


Theorem nqerf

Description: Corollary of nqereu : the function /Q is actually a function. (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)

Ref Expression
Assertion nqerf /𝑸:𝑵×𝑵𝑸

Proof

Step Hyp Ref Expression
1 df-erq /𝑸=~𝑸𝑵×𝑵×𝑸
2 inss2 ~𝑸𝑵×𝑵×𝑸𝑵×𝑵×𝑸
3 1 2 eqsstri /𝑸𝑵×𝑵×𝑸
4 xpss 𝑵×𝑵×𝑸V×V
5 3 4 sstri /𝑸V×V
6 df-rel Rel/𝑸/𝑸V×V
7 5 6 mpbir Rel/𝑸
8 nqereu x𝑵×𝑵∃!y𝑸y~𝑸x
9 df-reu ∃!y𝑸y~𝑸x∃!yy𝑸y~𝑸x
10 eumo ∃!yy𝑸y~𝑸x*yy𝑸y~𝑸x
11 9 10 sylbi ∃!y𝑸y~𝑸x*yy𝑸y~𝑸x
12 8 11 syl x𝑵×𝑵*yy𝑸y~𝑸x
13 moanimv *yx𝑵×𝑵y𝑸y~𝑸xx𝑵×𝑵*yy𝑸y~𝑸x
14 12 13 mpbir *yx𝑵×𝑵y𝑸y~𝑸x
15 3 brel x/𝑸yx𝑵×𝑵y𝑸
16 15 simpld x/𝑸yx𝑵×𝑵
17 15 simprd x/𝑸yy𝑸
18 enqer ~𝑸Er𝑵×𝑵
19 18 a1i x/𝑸y~𝑸Er𝑵×𝑵
20 inss1 ~𝑸𝑵×𝑵×𝑸~𝑸
21 1 20 eqsstri /𝑸~𝑸
22 21 ssbri x/𝑸yx~𝑸y
23 19 22 ersym x/𝑸yy~𝑸x
24 16 17 23 jca32 x/𝑸yx𝑵×𝑵y𝑸y~𝑸x
25 24 moimi *yx𝑵×𝑵y𝑸y~𝑸x*yx/𝑸y
26 14 25 ax-mp *yx/𝑸y
27 26 ax-gen x*yx/𝑸y
28 dffun6 Fun/𝑸Rel/𝑸x*yx/𝑸y
29 7 27 28 mpbir2an Fun/𝑸
30 dmss /𝑸𝑵×𝑵×𝑸dom/𝑸dom𝑵×𝑵×𝑸
31 3 30 ax-mp dom/𝑸dom𝑵×𝑵×𝑸
32 1nq 1𝑸𝑸
33 ne0i 1𝑸𝑸𝑸
34 dmxp 𝑸dom𝑵×𝑵×𝑸=𝑵×𝑵
35 32 33 34 mp2b dom𝑵×𝑵×𝑸=𝑵×𝑵
36 31 35 sseqtri dom/𝑸𝑵×𝑵
37 reurex ∃!y𝑸y~𝑸xy𝑸y~𝑸x
38 simpll x𝑵×𝑵y𝑸y~𝑸xx𝑵×𝑵
39 simplr x𝑵×𝑵y𝑸y~𝑸xy𝑸
40 18 a1i x𝑵×𝑵y𝑸y~𝑸x~𝑸Er𝑵×𝑵
41 simpr x𝑵×𝑵y𝑸y~𝑸xy~𝑸x
42 40 41 ersym x𝑵×𝑵y𝑸y~𝑸xx~𝑸y
43 1 breqi x/𝑸yx~𝑸𝑵×𝑵×𝑸y
44 brinxp2 x~𝑸𝑵×𝑵×𝑸yx𝑵×𝑵y𝑸x~𝑸y
45 43 44 bitri x/𝑸yx𝑵×𝑵y𝑸x~𝑸y
46 38 39 42 45 syl21anbrc x𝑵×𝑵y𝑸y~𝑸xx/𝑸y
47 46 ex x𝑵×𝑵y𝑸y~𝑸xx/𝑸y
48 47 reximdva x𝑵×𝑵y𝑸y~𝑸xy𝑸x/𝑸y
49 rexex y𝑸x/𝑸yyx/𝑸y
50 37 48 49 syl56 x𝑵×𝑵∃!y𝑸y~𝑸xyx/𝑸y
51 8 50 mpd x𝑵×𝑵yx/𝑸y
52 vex xV
53 52 eldm xdom/𝑸yx/𝑸y
54 51 53 sylibr x𝑵×𝑵xdom/𝑸
55 54 ssriv 𝑵×𝑵dom/𝑸
56 36 55 eqssi dom/𝑸=𝑵×𝑵
57 df-fn /𝑸Fn𝑵×𝑵Fun/𝑸dom/𝑸=𝑵×𝑵
58 29 56 57 mpbir2an /𝑸Fn𝑵×𝑵
59 3 rnssi ran/𝑸ran𝑵×𝑵×𝑸
60 rnxpss ran𝑵×𝑵×𝑸𝑸
61 59 60 sstri ran/𝑸𝑸
62 df-f /𝑸:𝑵×𝑵𝑸/𝑸Fn𝑵×𝑵ran/𝑸𝑸
63 58 61 62 mpbir2an /𝑸:𝑵×𝑵𝑸