Description: Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrivcvgfvn0.1 | |
|
ntrivcvgfvn0.2 | |
||
ntrivcvgfvn0.3 | |
||
ntrivcvgfvn0.4 | |
||
ntrivcvgfvn0.5 | |
||
Assertion | ntrivcvgfvn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrivcvgfvn0.1 | |
|
2 | ntrivcvgfvn0.2 | |
|
3 | ntrivcvgfvn0.3 | |
|
4 | ntrivcvgfvn0.4 | |
|
5 | ntrivcvgfvn0.5 | |
|
6 | fclim | |
|
7 | ffun | |
|
8 | 6 7 | ax-mp | |
9 | funbrfv | |
|
10 | 8 3 9 | mpsyl | |
11 | 10 | adantr | |
12 | eqid | |
|
13 | uzssz | |
|
14 | 1 13 | eqsstri | |
15 | 14 2 | sselid | |
16 | 15 | adantr | |
17 | seqex | |
|
18 | 17 | a1i | |
19 | 0cnd | |
|
20 | fveqeq2 | |
|
21 | 20 | imbi2d | |
22 | fveqeq2 | |
|
23 | 22 | imbi2d | |
24 | fveqeq2 | |
|
25 | 24 | imbi2d | |
26 | fveqeq2 | |
|
27 | 26 | imbi2d | |
28 | simpr | |
|
29 | 2 1 | eleqtrdi | |
30 | uztrn | |
|
31 | 29 30 | sylan2 | |
32 | 31 | 3adant3 | |
33 | seqp1 | |
|
34 | 32 33 | syl | |
35 | oveq1 | |
|
36 | 35 | 3ad2ant3 | |
37 | peano2uz | |
|
38 | 1 | uztrn2 | |
39 | 2 37 38 | syl2an | |
40 | 5 | ralrimiva | |
41 | fveq2 | |
|
42 | 41 | eleq1d | |
43 | 42 | rspcv | |
44 | 40 43 | mpan9 | |
45 | 39 44 | syldan | |
46 | 45 | ancoms | |
47 | 46 | mul02d | |
48 | 47 | 3adant3 | |
49 | 34 36 48 | 3eqtrd | |
50 | 49 | 3exp | |
51 | 50 | adantrd | |
52 | 51 | a2d | |
53 | 21 23 25 27 28 52 | uzind4i | |
54 | 53 | impcom | |
55 | 12 16 18 19 54 | climconst | |
56 | funbrfv | |
|
57 | 8 55 56 | mpsyl | |
58 | 11 57 | eqtr3d | |
59 | 58 | ex | |
60 | 59 | necon3d | |
61 | 4 60 | mpd | |