Metamath Proof Explorer


Theorem ntrivcvgfvn0

Description: Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017)

Ref Expression
Hypotheses ntrivcvgfvn0.1 Z=M
ntrivcvgfvn0.2 φNZ
ntrivcvgfvn0.3 φseqM×FX
ntrivcvgfvn0.4 φX0
ntrivcvgfvn0.5 φkZFk
Assertion ntrivcvgfvn0 φseqM×FN0

Proof

Step Hyp Ref Expression
1 ntrivcvgfvn0.1 Z=M
2 ntrivcvgfvn0.2 φNZ
3 ntrivcvgfvn0.3 φseqM×FX
4 ntrivcvgfvn0.4 φX0
5 ntrivcvgfvn0.5 φkZFk
6 fclim :dom
7 ffun :domFun
8 6 7 ax-mp Fun
9 funbrfv FunseqM×FXseqM×F=X
10 8 3 9 mpsyl φseqM×F=X
11 10 adantr φseqM×FN=0seqM×F=X
12 eqid N=N
13 uzssz M
14 1 13 eqsstri Z
15 14 2 sselid φN
16 15 adantr φseqM×FN=0N
17 seqex seqM×FV
18 17 a1i φseqM×FN=0seqM×FV
19 0cnd φseqM×FN=00
20 fveqeq2 m=NseqM×Fm=0seqM×FN=0
21 20 imbi2d m=NφseqM×FN=0seqM×Fm=0φseqM×FN=0seqM×FN=0
22 fveqeq2 m=nseqM×Fm=0seqM×Fn=0
23 22 imbi2d m=nφseqM×FN=0seqM×Fm=0φseqM×FN=0seqM×Fn=0
24 fveqeq2 m=n+1seqM×Fm=0seqM×Fn+1=0
25 24 imbi2d m=n+1φseqM×FN=0seqM×Fm=0φseqM×FN=0seqM×Fn+1=0
26 fveqeq2 m=kseqM×Fm=0seqM×Fk=0
27 26 imbi2d m=kφseqM×FN=0seqM×Fm=0φseqM×FN=0seqM×Fk=0
28 simpr φseqM×FN=0seqM×FN=0
29 2 1 eleqtrdi φNM
30 uztrn nNNMnM
31 29 30 sylan2 nNφnM
32 31 3adant3 nNφseqM×Fn=0nM
33 seqp1 nMseqM×Fn+1=seqM×FnFn+1
34 32 33 syl nNφseqM×Fn=0seqM×Fn+1=seqM×FnFn+1
35 oveq1 seqM×Fn=0seqM×FnFn+1=0Fn+1
36 35 3ad2ant3 nNφseqM×Fn=0seqM×FnFn+1=0Fn+1
37 peano2uz nNn+1N
38 1 uztrn2 NZn+1Nn+1Z
39 2 37 38 syl2an φnNn+1Z
40 5 ralrimiva φkZFk
41 fveq2 k=n+1Fk=Fn+1
42 41 eleq1d k=n+1FkFn+1
43 42 rspcv n+1ZkZFkFn+1
44 40 43 mpan9 φn+1ZFn+1
45 39 44 syldan φnNFn+1
46 45 ancoms nNφFn+1
47 46 mul02d nNφ0Fn+1=0
48 47 3adant3 nNφseqM×Fn=00Fn+1=0
49 34 36 48 3eqtrd nNφseqM×Fn=0seqM×Fn+1=0
50 49 3exp nNφseqM×Fn=0seqM×Fn+1=0
51 50 adantrd nNφseqM×FN=0seqM×Fn=0seqM×Fn+1=0
52 51 a2d nNφseqM×FN=0seqM×Fn=0φseqM×FN=0seqM×Fn+1=0
53 21 23 25 27 28 52 uzind4i kNφseqM×FN=0seqM×Fk=0
54 53 impcom φseqM×FN=0kNseqM×Fk=0
55 12 16 18 19 54 climconst φseqM×FN=0seqM×F0
56 funbrfv FunseqM×F0seqM×F=0
57 8 55 56 mpsyl φseqM×FN=0seqM×F=0
58 11 57 eqtr3d φseqM×FN=0X=0
59 58 ex φseqM×FN=0X=0
60 59 necon3d φX0seqM×FN0
61 4 60 mpd φseqM×FN0