Metamath Proof Explorer


Theorem ntrivcvgfvn0

Description: Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017)

Ref Expression
Hypotheses ntrivcvgfvn0.1 Z = M
ntrivcvgfvn0.2 φ N Z
ntrivcvgfvn0.3 φ seq M × F X
ntrivcvgfvn0.4 φ X 0
ntrivcvgfvn0.5 φ k Z F k
Assertion ntrivcvgfvn0 φ seq M × F N 0

Proof

Step Hyp Ref Expression
1 ntrivcvgfvn0.1 Z = M
2 ntrivcvgfvn0.2 φ N Z
3 ntrivcvgfvn0.3 φ seq M × F X
4 ntrivcvgfvn0.4 φ X 0
5 ntrivcvgfvn0.5 φ k Z F k
6 fclim : dom
7 ffun : dom Fun
8 6 7 ax-mp Fun
9 funbrfv Fun seq M × F X seq M × F = X
10 8 3 9 mpsyl φ seq M × F = X
11 10 adantr φ seq M × F N = 0 seq M × F = X
12 eqid N = N
13 uzssz M
14 1 13 eqsstri Z
15 14 2 sseldi φ N
16 15 adantr φ seq M × F N = 0 N
17 seqex seq M × F V
18 17 a1i φ seq M × F N = 0 seq M × F V
19 0cnd φ seq M × F N = 0 0
20 fveqeq2 m = N seq M × F m = 0 seq M × F N = 0
21 20 imbi2d m = N φ seq M × F N = 0 seq M × F m = 0 φ seq M × F N = 0 seq M × F N = 0
22 fveqeq2 m = n seq M × F m = 0 seq M × F n = 0
23 22 imbi2d m = n φ seq M × F N = 0 seq M × F m = 0 φ seq M × F N = 0 seq M × F n = 0
24 fveqeq2 m = n + 1 seq M × F m = 0 seq M × F n + 1 = 0
25 24 imbi2d m = n + 1 φ seq M × F N = 0 seq M × F m = 0 φ seq M × F N = 0 seq M × F n + 1 = 0
26 fveqeq2 m = k seq M × F m = 0 seq M × F k = 0
27 26 imbi2d m = k φ seq M × F N = 0 seq M × F m = 0 φ seq M × F N = 0 seq M × F k = 0
28 simpr φ seq M × F N = 0 seq M × F N = 0
29 2 1 eleqtrdi φ N M
30 uztrn n N N M n M
31 29 30 sylan2 n N φ n M
32 31 3adant3 n N φ seq M × F n = 0 n M
33 seqp1 n M seq M × F n + 1 = seq M × F n F n + 1
34 32 33 syl n N φ seq M × F n = 0 seq M × F n + 1 = seq M × F n F n + 1
35 oveq1 seq M × F n = 0 seq M × F n F n + 1 = 0 F n + 1
36 35 3ad2ant3 n N φ seq M × F n = 0 seq M × F n F n + 1 = 0 F n + 1
37 peano2uz n N n + 1 N
38 1 uztrn2 N Z n + 1 N n + 1 Z
39 2 37 38 syl2an φ n N n + 1 Z
40 5 ralrimiva φ k Z F k
41 fveq2 k = n + 1 F k = F n + 1
42 41 eleq1d k = n + 1 F k F n + 1
43 42 rspcv n + 1 Z k Z F k F n + 1
44 40 43 mpan9 φ n + 1 Z F n + 1
45 39 44 syldan φ n N F n + 1
46 45 ancoms n N φ F n + 1
47 46 mul02d n N φ 0 F n + 1 = 0
48 47 3adant3 n N φ seq M × F n = 0 0 F n + 1 = 0
49 34 36 48 3eqtrd n N φ seq M × F n = 0 seq M × F n + 1 = 0
50 49 3exp n N φ seq M × F n = 0 seq M × F n + 1 = 0
51 50 adantrd n N φ seq M × F N = 0 seq M × F n = 0 seq M × F n + 1 = 0
52 51 a2d n N φ seq M × F N = 0 seq M × F n = 0 φ seq M × F N = 0 seq M × F n + 1 = 0
53 21 23 25 27 28 52 uzind4i k N φ seq M × F N = 0 seq M × F k = 0
54 53 impcom φ seq M × F N = 0 k N seq M × F k = 0
55 12 16 18 19 54 climconst φ seq M × F N = 0 seq M × F 0
56 funbrfv Fun seq M × F 0 seq M × F = 0
57 8 55 56 mpsyl φ seq M × F N = 0 seq M × F = 0
58 11 57 eqtr3d φ seq M × F N = 0 X = 0
59 58 ex φ seq M × F N = 0 X = 0
60 59 necon3d φ X 0 seq M × F N 0
61 4 60 mpd φ seq M × F N 0