Step |
Hyp |
Ref |
Expression |
1 |
|
ntrivcvgtail.1 |
|
2 |
|
ntrivcvgtail.2 |
|
3 |
|
ntrivcvgtail.3 |
|
4 |
|
ntrivcvgtail.4 |
|
5 |
|
ntrivcvgtail.5 |
|
6 |
|
fclim |
|
7 |
|
ffun |
|
8 |
6 7
|
ax-mp |
|
9 |
|
funbrfv |
|
10 |
8 3 9
|
mpsyl |
|
11 |
10 4
|
eqnetrd |
|
12 |
3 10
|
breqtrrd |
|
13 |
11 12
|
jca |
|
14 |
13
|
adantr |
|
15 |
|
seqeq1 |
|
16 |
15
|
fveq2d |
|
17 |
16
|
neeq1d |
|
18 |
15 16
|
breq12d |
|
19 |
17 18
|
anbi12d |
|
20 |
19
|
adantl |
|
21 |
14 20
|
mpbird |
|
22 |
|
simpr |
|
23 |
22 1
|
eleqtrrdi |
|
24 |
5
|
adantlr |
|
25 |
3
|
adantr |
|
26 |
4
|
adantr |
|
27 |
1 23 25 26 24
|
ntrivcvgfvn0 |
|
28 |
1 23 24 25 27
|
clim2div |
|
29 |
|
funbrfv |
|
30 |
8 28 29
|
mpsyl |
|
31 |
|
climcl |
|
32 |
3 31
|
syl |
|
33 |
32
|
adantr |
|
34 |
|
eluzel2 |
|
35 |
34 1
|
eleq2s |
|
36 |
2 35
|
syl |
|
37 |
1 36 5
|
prodf |
|
38 |
1
|
feq2i |
|
39 |
37 38
|
sylib |
|
40 |
39
|
ffvelrnda |
|
41 |
33 40 26 27
|
divne0d |
|
42 |
30 41
|
eqnetrd |
|
43 |
28 30
|
breqtrrd |
|
44 |
|
uzssz |
|
45 |
1 44
|
eqsstri |
|
46 |
45 2
|
sselid |
|
47 |
46
|
zcnd |
|
48 |
47
|
adantr |
|
49 |
|
1cnd |
|
50 |
48 49
|
npcand |
|
51 |
50
|
seqeq1d |
|
52 |
51
|
fveq2d |
|
53 |
52
|
neeq1d |
|
54 |
51 52
|
breq12d |
|
55 |
53 54
|
anbi12d |
|
56 |
42 43 55
|
mpbi2and |
|
57 |
2 1
|
eleqtrdi |
|
58 |
|
uzm1 |
|
59 |
57 58
|
syl |
|
60 |
21 56 59
|
mpjaodan |
|