Description: Lemma for ntrivcvgmul . (Contributed by Scott Fenton, 19-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrivcvgmullem.1 | |
|
ntrivcvgmullem.2 | |
||
ntrivcvgmullem.3 | |
||
ntrivcvgmullem.4 | |
||
ntrivcvgmullem.5 | |
||
ntrivcvgmullem.6 | |
||
ntrivcvgmullem.7 | |
||
ntrivcvgmullem.8 | |
||
ntrivcvgmullem.9 | |
||
ntrivcvgmullem.a | |
||
ntrivcvgmullem.b | |
||
Assertion | ntrivcvgmullem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrivcvgmullem.1 | |
|
2 | ntrivcvgmullem.2 | |
|
3 | ntrivcvgmullem.3 | |
|
4 | ntrivcvgmullem.4 | |
|
5 | ntrivcvgmullem.5 | |
|
6 | ntrivcvgmullem.6 | |
|
7 | ntrivcvgmullem.7 | |
|
8 | ntrivcvgmullem.8 | |
|
9 | ntrivcvgmullem.9 | |
|
10 | ntrivcvgmullem.a | |
|
11 | ntrivcvgmullem.b | |
|
12 | eqid | |
|
13 | uzssz | |
|
14 | 1 13 | eqsstri | |
15 | 14 2 | sselid | |
16 | 14 3 | sselid | |
17 | eluz | |
|
18 | 15 16 17 | syl2anc | |
19 | 10 18 | mpbird | |
20 | 1 | uztrn2 | |
21 | 2 20 | sylan | |
22 | 21 8 | syldan | |
23 | 12 19 6 4 22 | ntrivcvgtail | |
24 | 23 | simprd | |
25 | climcl | |
|
26 | 24 25 | syl | |
27 | climcl | |
|
28 | 7 27 | syl | |
29 | 23 | simpld | |
30 | 26 28 29 5 | mulne0d | |
31 | eqid | |
|
32 | seqex | |
|
33 | 32 | a1i | |
34 | 1 | uztrn2 | |
35 | 3 34 | sylan | |
36 | 35 8 | syldan | |
37 | 31 16 36 | prodf | |
38 | 37 | ffvelcdmda | |
39 | 35 9 | syldan | |
40 | 31 16 39 | prodf | |
41 | 40 | ffvelcdmda | |
42 | simpr | |
|
43 | simpll | |
|
44 | 3 | adantr | |
45 | elfzuz | |
|
46 | 44 45 34 | syl2an | |
47 | 43 46 8 | syl2anc | |
48 | 43 46 9 | syl2anc | |
49 | 43 46 11 | syl2anc | |
50 | 42 47 48 49 | prodfmul | |
51 | 31 16 24 33 7 38 41 50 | climmul | |
52 | ovex | |
|
53 | neeq1 | |
|
54 | breq2 | |
|
55 | 53 54 | anbi12d | |
56 | 52 55 | spcev | |
57 | 30 51 56 | syl2anc | |
58 | seqeq1 | |
|
59 | 58 | breq1d | |
60 | 59 | anbi2d | |
61 | 60 | exbidv | |
62 | 61 | rspcev | |
63 | 3 57 62 | syl2anc | |