Description: The restriction of a function to an unbounded-above interval is eventually bounded iff the original is eventually bounded. (Contributed by Mario Carneiro, 9-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimresb.1 | |
|
rlimresb.2 | |
||
rlimresb.3 | |
||
Assertion | o1resb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimresb.1 | |
|
2 | rlimresb.2 | |
|
3 | rlimresb.3 | |
|
4 | o1res | |
|
5 | 1 | feqmptd | |
6 | 5 | reseq1d | |
7 | resmpt3 | |
|
8 | 6 7 | eqtrdi | |
9 | 8 | eleq1d | |
10 | inss1 | |
|
11 | 10 2 | sstrid | |
12 | elinel1 | |
|
13 | ffvelcdm | |
|
14 | 1 12 13 | syl2an | |
15 | 11 14 | elo1mpt | |
16 | elin | |
|
17 | 16 | imbi1i | |
18 | impexp | |
|
19 | 17 18 | bitri | |
20 | impexp | |
|
21 | 3 | ad2antrr | |
22 | 2 | adantr | |
23 | 22 | sselda | |
24 | elicopnf | |
|
25 | 24 | baibd | |
26 | 21 23 25 | syl2anc | |
27 | 26 | anbi1d | |
28 | simplrl | |
|
29 | maxle | |
|
30 | 21 28 23 29 | syl3anc | |
31 | 27 30 | bitr4d | |
32 | 31 | imbi1d | |
33 | 20 32 | bitr3id | |
34 | 33 | pm5.74da | |
35 | 19 34 | bitrid | |
36 | 35 | ralbidv2 | |
37 | 1 | adantr | |
38 | simprl | |
|
39 | 3 | adantr | |
40 | 38 39 | ifcld | |
41 | simprr | |
|
42 | elo12r | |
|
43 | 42 | 3expia | |
44 | 37 22 40 41 43 | syl22anc | |
45 | 36 44 | sylbid | |
46 | 45 | rexlimdvva | |
47 | 15 46 | sylbid | |
48 | 9 47 | sylbid | |
49 | 4 48 | impbid2 | |