Metamath Proof Explorer


Theorem o1resb

Description: The restriction of a function to an unbounded-above interval is eventually bounded iff the original is eventually bounded. (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Hypotheses rlimresb.1 φF:A
rlimresb.2 φA
rlimresb.3 φB
Assertion o1resb φF𝑂1FB+∞𝑂1

Proof

Step Hyp Ref Expression
1 rlimresb.1 φF:A
2 rlimresb.2 φA
3 rlimresb.3 φB
4 o1res F𝑂1FB+∞𝑂1
5 1 feqmptd φF=xAFx
6 5 reseq1d φFB+∞=xAFxB+∞
7 resmpt3 xAFxB+∞=xAB+∞Fx
8 6 7 eqtrdi φFB+∞=xAB+∞Fx
9 8 eleq1d φFB+∞𝑂1xAB+∞Fx𝑂1
10 inss1 AB+∞A
11 10 2 sstrid φAB+∞
12 elinel1 xAB+∞xA
13 ffvelcdm F:AxAFx
14 1 12 13 syl2an φxAB+∞Fx
15 11 14 elo1mpt φxAB+∞Fx𝑂1yzxAB+∞yxFxz
16 elin xAB+∞xAxB+∞
17 16 imbi1i xAB+∞yxFxzxAxB+∞yxFxz
18 impexp xAxB+∞yxFxzxAxB+∞yxFxz
19 17 18 bitri xAB+∞yxFxzxAxB+∞yxFxz
20 impexp xB+∞yxFxzxB+∞yxFxz
21 3 ad2antrr φyzxAB
22 2 adantr φyzA
23 22 sselda φyzxAx
24 elicopnf BxB+∞xBx
25 24 baibd BxxB+∞Bx
26 21 23 25 syl2anc φyzxAxB+∞Bx
27 26 anbi1d φyzxAxB+∞yxBxyx
28 simplrl φyzxAy
29 maxle ByxifByyBxBxyx
30 21 28 23 29 syl3anc φyzxAifByyBxBxyx
31 27 30 bitr4d φyzxAxB+∞yxifByyBx
32 31 imbi1d φyzxAxB+∞yxFxzifByyBxFxz
33 20 32 bitr3id φyzxAxB+∞yxFxzifByyBxFxz
34 33 pm5.74da φyzxAxB+∞yxFxzxAifByyBxFxz
35 19 34 bitrid φyzxAB+∞yxFxzxAifByyBxFxz
36 35 ralbidv2 φyzxAB+∞yxFxzxAifByyBxFxz
37 1 adantr φyzF:A
38 simprl φyzy
39 3 adantr φyzB
40 38 39 ifcld φyzifByyB
41 simprr φyzz
42 elo12r F:AAifByyBzxAifByyBxFxzF𝑂1
43 42 3expia F:AAifByyBzxAifByyBxFxzF𝑂1
44 37 22 40 41 43 syl22anc φyzxAifByyBxFxzF𝑂1
45 36 44 sylbid φyzxAB+∞yxFxzF𝑂1
46 45 rexlimdvva φyzxAB+∞yxFxzF𝑂1
47 15 46 sylbid φxAB+∞Fx𝑂1F𝑂1
48 9 47 sylbid φFB+∞𝑂1F𝑂1
49 4 48 impbid2 φF𝑂1FB+∞𝑂1