Metamath Proof Explorer


Theorem oacl2g

Description: Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion oacl2g ACBCC=C=ω𝑜DDOnA+𝑜BC

Proof

Step Hyp Ref Expression
1 eleq2 C=ACA
2 noel ¬A
3 2 pm2.21i AA+𝑜BC
4 1 3 syl6bi C=ACA+𝑜BC
5 4 com12 ACC=A+𝑜BC
6 5 adantr ACBCC=A+𝑜BC
7 simpl ACBCAC
8 simpl C=ω𝑜DDOnC=ω𝑜D
9 simpr C=ω𝑜DDOnDOn
10 omelon ωOn
11 9 10 jctil C=ω𝑜DDOnωOnDOn
12 oecl ωOnDOnω𝑜DOn
13 11 12 syl C=ω𝑜DDOnω𝑜DOn
14 8 13 eqeltrd C=ω𝑜DDOnCOn
15 14 adantl ACBCC=ω𝑜DDOnCOn
16 onelon COnACAOn
17 16 expcom ACCOnAOn
18 17 adantr ACBCCOnAOn
19 18 adantr ACBCC=ω𝑜DDOnCOnAOn
20 15 19 jcai ACBCC=ω𝑜DDOnCOnAOn
21 simpr ACBCBC
22 21 adantr ACBCC=ω𝑜DDOnBC
23 oaordi COnAOnBCA+𝑜BA+𝑜C
24 20 22 23 sylc ACBCC=ω𝑜DDOnA+𝑜BA+𝑜C
25 oveq1 x=Ax+𝑜C=A+𝑜C
26 25 eliuni ACA+𝑜BA+𝑜CA+𝑜BxCx+𝑜C
27 7 24 26 syl2an2r ACBCC=ω𝑜DDOnA+𝑜BxCx+𝑜C
28 simpr C=ω𝑜DDOnxCxC
29 8 adantr C=ω𝑜DDOnxCC=ω𝑜D
30 28 29 eleqtrd C=ω𝑜DDOnxCxω𝑜D
31 14 adantr C=ω𝑜DDOnxCCOn
32 8 eqcomd C=ω𝑜DDOnω𝑜D=C
33 ssid CC
34 32 33 eqsstrdi C=ω𝑜DDOnω𝑜DC
35 34 adantr C=ω𝑜DDOnxCω𝑜DC
36 oaabs2 xω𝑜DCOnω𝑜DCx+𝑜C=C
37 30 31 35 36 syl21anc C=ω𝑜DDOnxCx+𝑜C=C
38 37 33 eqsstrdi C=ω𝑜DDOnxCx+𝑜CC
39 38 iunssd C=ω𝑜DDOnxCx+𝑜CC
40 peano1 ω
41 oen0 ωOnDOnωω𝑜D
42 11 40 41 sylancl C=ω𝑜DDOnω𝑜D
43 42 32 eleqtrd C=ω𝑜DDOnC
44 simpr C=ω𝑜DDOnx=x=
45 44 oveq1d C=ω𝑜DDOnx=x+𝑜C=+𝑜C
46 oa0r COn+𝑜C=C
47 14 46 syl C=ω𝑜DDOn+𝑜C=C
48 47 adantr C=ω𝑜DDOnx=+𝑜C=C
49 45 48 eqtrd C=ω𝑜DDOnx=x+𝑜C=C
50 49 sseq2d C=ω𝑜DDOnx=Cx+𝑜CCC
51 ssidd C=ω𝑜DDOnCC
52 43 50 51 rspcedvd C=ω𝑜DDOnxCCx+𝑜C
53 ssiun xCCx+𝑜CCxCx+𝑜C
54 52 53 syl C=ω𝑜DDOnCxCx+𝑜C
55 39 54 eqssd C=ω𝑜DDOnxCx+𝑜C=C
56 55 adantl ACBCC=ω𝑜DDOnxCx+𝑜C=C
57 27 56 eleqtrd ACBCC=ω𝑜DDOnA+𝑜BC
58 57 ex ACBCC=ω𝑜DDOnA+𝑜BC
59 6 58 jaod ACBCC=C=ω𝑜DDOnA+𝑜BC
60 59 imp ACBCC=C=ω𝑜DDOnA+𝑜BC