Description: Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oacl2g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |
|
2 | noel | |
|
3 | 2 | pm2.21i | |
4 | 1 3 | syl6bi | |
5 | 4 | com12 | |
6 | 5 | adantr | |
7 | simpl | |
|
8 | simpl | |
|
9 | simpr | |
|
10 | omelon | |
|
11 | 9 10 | jctil | |
12 | oecl | |
|
13 | 11 12 | syl | |
14 | 8 13 | eqeltrd | |
15 | 14 | adantl | |
16 | onelon | |
|
17 | 16 | expcom | |
18 | 17 | adantr | |
19 | 18 | adantr | |
20 | 15 19 | jcai | |
21 | simpr | |
|
22 | 21 | adantr | |
23 | oaordi | |
|
24 | 20 22 23 | sylc | |
25 | oveq1 | |
|
26 | 25 | eliuni | |
27 | 7 24 26 | syl2an2r | |
28 | simpr | |
|
29 | 8 | adantr | |
30 | 28 29 | eleqtrd | |
31 | 14 | adantr | |
32 | 8 | eqcomd | |
33 | ssid | |
|
34 | 32 33 | eqsstrdi | |
35 | 34 | adantr | |
36 | oaabs2 | |
|
37 | 30 31 35 36 | syl21anc | |
38 | 37 33 | eqsstrdi | |
39 | 38 | iunssd | |
40 | peano1 | |
|
41 | oen0 | |
|
42 | 11 40 41 | sylancl | |
43 | 42 32 | eleqtrd | |
44 | simpr | |
|
45 | 44 | oveq1d | |
46 | oa0r | |
|
47 | 14 46 | syl | |
48 | 47 | adantr | |
49 | 45 48 | eqtrd | |
50 | 49 | sseq2d | |
51 | ssidd | |
|
52 | 43 50 51 | rspcedvd | |
53 | ssiun | |
|
54 | 52 53 | syl | |
55 | 39 54 | eqssd | |
56 | 55 | adantl | |
57 | 27 56 | eleqtrd | |
58 | 57 | ex | |
59 | 6 58 | jaod | |
60 | 59 | imp | |