Metamath Proof Explorer


Theorem oddnumth

Description: The Odd Number Theorem. The sum of the first N odd numbers is N ^ 2 . A corollary of arisum . (Contributed by SN, 21-Mar-2025)

Ref Expression
Assertion oddnumth N0k=1N2k1=N2

Proof

Step Hyp Ref Expression
1 fzfid N01NFin
2 2cnd k1N2
3 elfznn k1Nk
4 3 nncnd k1Nk
5 2 4 mulcld k1N2k
6 5 adantl N0k1N2k
7 1cnd N0k1N1
8 1 6 7 fsumsub N0k=1N2k1=k=1N2kk=1N1
9 arisum N0k=1Nk=N2+N2
10 9 oveq2d N02k=1Nk=2N2+N2
11 2cnd N02
12 4 adantl N0k1Nk
13 1 11 12 fsummulc2 N02k=1Nk=k=1N2k
14 nn0cn N0N
15 14 sqcld N0N2
16 15 14 addcld N0N2+N
17 2ne0 20
18 17 a1i N020
19 16 11 18 divcan2d N02N2+N2=N2+N
20 10 13 19 3eqtr3d N0k=1N2k=N2+N
21 id N0N0
22 1cnd N01
23 21 22 fz1sumconst N0k=1N1= N1
24 14 mulridd N0 N1=N
25 23 24 eqtrd N0k=1N1=N
26 20 25 oveq12d N0k=1N2kk=1N1=N2+N-N
27 15 14 pncand N0N2+N-N=N2
28 8 26 27 3eqtrd N0k=1N2k1=N2