| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|
| 2 |
|
odcl.2 |
|
| 3 |
|
odid.3 |
|
| 4 |
|
odid.4 |
|
| 5 |
|
simpl1 |
|
| 6 |
|
nnnn0 |
|
| 7 |
6
|
adantl |
|
| 8 |
|
simpl3 |
|
| 9 |
8
|
nn0red |
|
| 10 |
|
nnrp |
|
| 11 |
10
|
adantl |
|
| 12 |
9 11
|
rerpdivcld |
|
| 13 |
8
|
nn0ge0d |
|
| 14 |
|
nnre |
|
| 15 |
14
|
adantl |
|
| 16 |
|
nngt0 |
|
| 17 |
16
|
adantl |
|
| 18 |
|
divge0 |
|
| 19 |
9 13 15 17 18
|
syl22anc |
|
| 20 |
|
flge0nn0 |
|
| 21 |
12 19 20
|
syl2anc |
|
| 22 |
7 21
|
nn0mulcld |
|
| 23 |
8
|
nn0zd |
|
| 24 |
|
zmodcl |
|
| 25 |
23 24
|
sylancom |
|
| 26 |
|
simpl2 |
|
| 27 |
|
eqid |
|
| 28 |
1 3 27
|
mulgnn0dir |
|
| 29 |
5 22 25 26 28
|
syl13anc |
|
| 30 |
15
|
recnd |
|
| 31 |
21
|
nn0cnd |
|
| 32 |
30 31
|
mulcomd |
|
| 33 |
32
|
oveq1d |
|
| 34 |
1 3
|
mulgnn0ass |
|
| 35 |
5 21 7 26 34
|
syl13anc |
|
| 36 |
1 2 3 4
|
odid |
|
| 37 |
26 36
|
syl |
|
| 38 |
37
|
oveq2d |
|
| 39 |
1 3 4
|
mulgnn0z |
|
| 40 |
5 21 39
|
syl2anc |
|
| 41 |
38 40
|
eqtrd |
|
| 42 |
35 41
|
eqtrd |
|
| 43 |
33 42
|
eqtrd |
|
| 44 |
43
|
oveq1d |
|
| 45 |
29 44
|
eqtrd |
|
| 46 |
|
modval |
|
| 47 |
9 11 46
|
syl2anc |
|
| 48 |
47
|
oveq2d |
|
| 49 |
22
|
nn0cnd |
|
| 50 |
8
|
nn0cnd |
|
| 51 |
49 50
|
pncan3d |
|
| 52 |
48 51
|
eqtrd |
|
| 53 |
52
|
oveq1d |
|
| 54 |
1 3 5 25 26
|
mulgnn0cld |
|
| 55 |
1 27 4
|
mndlid |
|
| 56 |
5 54 55
|
syl2anc |
|
| 57 |
45 53 56
|
3eqtr3rd |
|