| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odmulgid.1 |
|
| 2 |
|
odmulgid.2 |
|
| 3 |
|
odmulgid.3 |
|
| 4 |
1 3
|
mulgcl |
|
| 5 |
4
|
3com23 |
|
| 6 |
1 2
|
odcl |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
nn0cnd |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
mul02d |
|
| 11 |
|
simpr |
|
| 12 |
11
|
oveq1d |
|
| 13 |
|
simp3 |
|
| 14 |
1 2
|
odcl |
|
| 15 |
14
|
3ad2ant2 |
|
| 16 |
15
|
nn0zd |
|
| 17 |
|
gcdeq0 |
|
| 18 |
13 16 17
|
syl2anc |
|
| 19 |
18
|
simplbda |
|
| 20 |
10 12 19
|
3eqtr4rd |
|
| 21 |
|
simpll3 |
|
| 22 |
16
|
ad2antrr |
|
| 23 |
|
gcddvds |
|
| 24 |
21 22 23
|
syl2anc |
|
| 25 |
24
|
simprd |
|
| 26 |
13 16
|
gcdcld |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
nn0zd |
|
| 29 |
28
|
adantr |
|
| 30 |
|
nn0z |
|
| 31 |
30
|
adantl |
|
| 32 |
|
dvdstr |
|
| 33 |
29 22 31 32
|
syl3anc |
|
| 34 |
25 33
|
mpand |
|
| 35 |
7
|
nn0zd |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
|
muldvds1 |
|
| 38 |
29 36 31 37
|
syl3anc |
|
| 39 |
|
dvdszrcl |
|
| 40 |
|
divides |
|
| 41 |
39 40
|
syl |
|
| 42 |
41
|
ibi |
|
| 43 |
35
|
adantr |
|
| 44 |
|
simprr |
|
| 45 |
28
|
adantrr |
|
| 46 |
|
simprl |
|
| 47 |
|
dvdscmulr |
|
| 48 |
43 44 45 46 47
|
syl112anc |
|
| 49 |
1 2 3
|
odmulgid |
|
| 50 |
49
|
adantrl |
|
| 51 |
|
simpl3 |
|
| 52 |
|
dvdsmulgcd |
|
| 53 |
44 51 52
|
syl2anc |
|
| 54 |
48 50 53
|
3bitrrd |
|
| 55 |
45
|
zcnd |
|
| 56 |
44
|
zcnd |
|
| 57 |
55 56
|
mulcomd |
|
| 58 |
57
|
breq2d |
|
| 59 |
54 58
|
bitrd |
|
| 60 |
59
|
anassrs |
|
| 61 |
|
breq2 |
|
| 62 |
|
breq2 |
|
| 63 |
61 62
|
bibi12d |
|
| 64 |
60 63
|
syl5ibcom |
|
| 65 |
64
|
rexlimdva |
|
| 66 |
42 65
|
syl5 |
|
| 67 |
66
|
adantr |
|
| 68 |
34 38 67
|
pm5.21ndd |
|
| 69 |
68
|
ralrimiva |
|
| 70 |
15
|
adantr |
|
| 71 |
7
|
adantr |
|
| 72 |
27 71
|
nn0mulcld |
|
| 73 |
|
dvdsext |
|
| 74 |
70 72 73
|
syl2anc |
|
| 75 |
69 74
|
mpbird |
|
| 76 |
20 75
|
pm2.61dane |
|