| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odmulgid.1 |  | 
						
							| 2 |  | odmulgid.2 |  | 
						
							| 3 |  | odmulgid.3 |  | 
						
							| 4 |  | eqcom |  | 
						
							| 5 |  | simpl2 |  | 
						
							| 6 | 1 2 | odcl |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 7 | nn0cnd |  | 
						
							| 9 |  | simpl1 |  | 
						
							| 10 |  | simpl3 |  | 
						
							| 11 | 1 3 | mulgcl |  | 
						
							| 12 | 9 10 5 11 | syl3anc |  | 
						
							| 13 | 1 2 | odcl |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 14 | nn0cnd |  | 
						
							| 16 |  | nnne0 |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 1 2 3 | odmulg2 |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | breq1 |  | 
						
							| 21 | 19 20 | syl5ibcom |  | 
						
							| 22 | 7 | nn0zd |  | 
						
							| 23 |  | 0dvds |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 21 24 | sylibd |  | 
						
							| 26 | 25 | necon3d |  | 
						
							| 27 | 17 26 | mpd |  | 
						
							| 28 | 8 15 27 | diveq1ad |  | 
						
							| 29 | 10 22 | gcdcld |  | 
						
							| 30 | 29 | nn0cnd |  | 
						
							| 31 | 15 30 | mulcomd |  | 
						
							| 32 | 1 2 3 | odmulg |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 31 33 | eqtr4d |  | 
						
							| 35 | 8 15 30 27 | divmuld |  | 
						
							| 36 | 34 35 | mpbird |  | 
						
							| 37 | 36 | eqeq1d |  | 
						
							| 38 | 28 37 | bitr3d |  | 
						
							| 39 | 4 38 | bitrid |  |