Metamath Proof Explorer


Theorem odmulgeq

Description: A multiple of a point of finite order only has the same order if the multiplier is relatively prime. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odmulgid.1 X=BaseG
odmulgid.2 O=odG
odmulgid.3 ·˙=G
Assertion odmulgeq GGrpAXNOAON·˙A=OANgcdOA=1

Proof

Step Hyp Ref Expression
1 odmulgid.1 X=BaseG
2 odmulgid.2 O=odG
3 odmulgid.3 ·˙=G
4 eqcom ON·˙A=OAOA=ON·˙A
5 simpl2 GGrpAXNOAAX
6 1 2 odcl AXOA0
7 5 6 syl GGrpAXNOAOA0
8 7 nn0cnd GGrpAXNOAOA
9 simpl1 GGrpAXNOAGGrp
10 simpl3 GGrpAXNOAN
11 1 3 mulgcl GGrpNAXN·˙AX
12 9 10 5 11 syl3anc GGrpAXNOAN·˙AX
13 1 2 odcl N·˙AXON·˙A0
14 12 13 syl GGrpAXNOAON·˙A0
15 14 nn0cnd GGrpAXNOAON·˙A
16 nnne0 OAOA0
17 16 adantl GGrpAXNOAOA0
18 1 2 3 odmulg2 GGrpAXNON·˙AOA
19 18 adantr GGrpAXNOAON·˙AOA
20 breq1 ON·˙A=0ON·˙AOA0OA
21 19 20 syl5ibcom GGrpAXNOAON·˙A=00OA
22 7 nn0zd GGrpAXNOAOA
23 0dvds OA0OAOA=0
24 22 23 syl GGrpAXNOA0OAOA=0
25 21 24 sylibd GGrpAXNOAON·˙A=0OA=0
26 25 necon3d GGrpAXNOAOA0ON·˙A0
27 17 26 mpd GGrpAXNOAON·˙A0
28 8 15 27 diveq1ad GGrpAXNOAOAON·˙A=1OA=ON·˙A
29 10 22 gcdcld GGrpAXNOANgcdOA0
30 29 nn0cnd GGrpAXNOANgcdOA
31 15 30 mulcomd GGrpAXNOAON·˙ANgcdOA=NgcdOAON·˙A
32 1 2 3 odmulg GGrpAXNOA=NgcdOAON·˙A
33 32 adantr GGrpAXNOAOA=NgcdOAON·˙A
34 31 33 eqtr4d GGrpAXNOAON·˙ANgcdOA=OA
35 8 15 30 27 divmuld GGrpAXNOAOAON·˙A=NgcdOAON·˙ANgcdOA=OA
36 34 35 mpbird GGrpAXNOAOAON·˙A=NgcdOA
37 36 eqeq1d GGrpAXNOAOAON·˙A=1NgcdOA=1
38 28 37 bitr3d GGrpAXNOAOA=ON·˙ANgcdOA=1
39 4 38 bitrid GGrpAXNOAON·˙A=OANgcdOA=1