Description: A multiple of a point of finite order only has the same order if the multiplier is relatively prime. (Contributed by Stefan O'Rear, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odmulgid.1 | |
|
odmulgid.2 | |
||
odmulgid.3 | |
||
Assertion | odmulgeq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odmulgid.1 | |
|
2 | odmulgid.2 | |
|
3 | odmulgid.3 | |
|
4 | eqcom | |
|
5 | simpl2 | |
|
6 | 1 2 | odcl | |
7 | 5 6 | syl | |
8 | 7 | nn0cnd | |
9 | simpl1 | |
|
10 | simpl3 | |
|
11 | 1 3 | mulgcl | |
12 | 9 10 5 11 | syl3anc | |
13 | 1 2 | odcl | |
14 | 12 13 | syl | |
15 | 14 | nn0cnd | |
16 | nnne0 | |
|
17 | 16 | adantl | |
18 | 1 2 3 | odmulg2 | |
19 | 18 | adantr | |
20 | breq1 | |
|
21 | 19 20 | syl5ibcom | |
22 | 7 | nn0zd | |
23 | 0dvds | |
|
24 | 22 23 | syl | |
25 | 21 24 | sylibd | |
26 | 25 | necon3d | |
27 | 17 26 | mpd | |
28 | 8 15 27 | diveq1ad | |
29 | 10 22 | gcdcld | |
30 | 29 | nn0cnd | |
31 | 15 30 | mulcomd | |
32 | 1 2 3 | odmulg | |
33 | 32 | adantr | |
34 | 31 33 | eqtr4d | |
35 | 8 15 30 27 | divmuld | |
36 | 34 35 | mpbird | |
37 | 36 | eqeq1d | |
38 | 28 37 | bitr3d | |
39 | 4 38 | bitrid | |