Description: - Lemma for odzcl , showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014) (Proof shortened by AV, 26-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | odzcllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odzval | |
|
2 | ssrab2 | |
|
3 | nnuz | |
|
4 | 2 3 | sseqtri | |
5 | phicl | |
|
6 | 5 | 3ad2ant1 | |
7 | eulerth | |
|
8 | simp1 | |
|
9 | simp2 | |
|
10 | 6 | nnnn0d | |
11 | zexpcl | |
|
12 | 9 10 11 | syl2anc | |
13 | 1z | |
|
14 | moddvds | |
|
15 | 13 14 | mp3an3 | |
16 | 8 12 15 | syl2anc | |
17 | 7 16 | mpbid | |
18 | oveq2 | |
|
19 | 18 | oveq1d | |
20 | 19 | breq2d | |
21 | 20 | rspcev | |
22 | 6 17 21 | syl2anc | |
23 | rabn0 | |
|
24 | 22 23 | sylibr | |
25 | infssuzcl | |
|
26 | 4 24 25 | sylancr | |
27 | 1 26 | eqeltrd | |
28 | oveq2 | |
|
29 | 28 | oveq1d | |
30 | 29 | breq2d | |
31 | 30 | elrab | |
32 | 27 31 | sylib | |