Metamath Proof Explorer


Theorem odzcllem

Description: - Lemma for odzcl , showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Assertion odzcllem NAAgcdN=1odNANAodNA1

Proof

Step Hyp Ref Expression
1 odzval NAAgcdN=1odNA=supn|NAn1<
2 ssrab2 n|NAn1
3 nnuz =1
4 2 3 sseqtri n|NAn11
5 phicl NϕN
6 5 3ad2ant1 NAAgcdN=1ϕN
7 eulerth NAAgcdN=1AϕNmodN=1modN
8 simp1 NAAgcdN=1N
9 simp2 NAAgcdN=1A
10 6 nnnn0d NAAgcdN=1ϕN0
11 zexpcl AϕN0AϕN
12 9 10 11 syl2anc NAAgcdN=1AϕN
13 1z 1
14 moddvds NAϕN1AϕNmodN=1modNNAϕN1
15 13 14 mp3an3 NAϕNAϕNmodN=1modNNAϕN1
16 8 12 15 syl2anc NAAgcdN=1AϕNmodN=1modNNAϕN1
17 7 16 mpbid NAAgcdN=1NAϕN1
18 oveq2 n=ϕNAn=AϕN
19 18 oveq1d n=ϕNAn1=AϕN1
20 19 breq2d n=ϕNNAn1NAϕN1
21 20 rspcev ϕNNAϕN1nNAn1
22 6 17 21 syl2anc NAAgcdN=1nNAn1
23 rabn0 n|NAn1nNAn1
24 22 23 sylibr NAAgcdN=1n|NAn1
25 infssuzcl n|NAn11n|NAn1supn|NAn1<n|NAn1
26 4 24 25 sylancr NAAgcdN=1supn|NAn1<n|NAn1
27 1 26 eqeltrd NAAgcdN=1odNAn|NAn1
28 oveq2 n=odNAAn=AodNA
29 28 oveq1d n=odNAAn1=AodNA1
30 29 breq2d n=odNANAn1NAodNA1
31 30 elrab odNAn|NAn1odNANAodNA1
32 27 31 sylib NAAgcdN=1odNANAodNA1