Metamath Proof Explorer


Theorem offsplitfpar

Description: Express the function operation map oF by the functions defined in fsplit and fpar . (Contributed by AV, 4-Jan-2024)

Ref Expression
Hypotheses fsplitfpar.h H=1stV×V-1F1stV×V2ndV×V-1G2ndV×V
fsplitfpar.s S=1stI-1A
Assertion offsplitfpar FFnAGFnAFVGW+˙FnCranF×ranGC+˙HS=F+˙fG

Proof

Step Hyp Ref Expression
1 fsplitfpar.h H=1stV×V-1F1stV×V2ndV×V-1G2ndV×V
2 fsplitfpar.s S=1stI-1A
3 1 2 fsplitfpar FFnAGFnAHS=aAFaGa
4 3 coeq2d FFnAGFnA+˙HS=+˙aAFaGa
5 4 3ad2ant1 FFnAGFnAFVGW+˙FnCranF×ranGC+˙HS=+˙aAFaGa
6 dffn3 +˙FnC+˙:Cran+˙
7 6 biimpi +˙FnC+˙:Cran+˙
8 7 adantr +˙FnCranF×ranGC+˙:Cran+˙
9 8 3ad2ant3 FFnAGFnAFVGW+˙FnCranF×ranGC+˙:Cran+˙
10 simpl3r FFnAGFnAFVGW+˙FnCranF×ranGCaAranF×ranGC
11 simp1l FFnAGFnAFVGW+˙FnCranF×ranGCFFnA
12 fnfvelrn FFnAaAFaranF
13 11 12 sylan FFnAGFnAFVGW+˙FnCranF×ranGCaAFaranF
14 simp1r FFnAGFnAFVGW+˙FnCranF×ranGCGFnA
15 fnfvelrn GFnAaAGaranG
16 14 15 sylan FFnAGFnAFVGW+˙FnCranF×ranGCaAGaranG
17 13 16 opelxpd FFnAGFnAFVGW+˙FnCranF×ranGCaAFaGaranF×ranG
18 10 17 sseldd FFnAGFnAFVGW+˙FnCranF×ranGCaAFaGaC
19 9 18 cofmpt FFnAGFnAFVGW+˙FnCranF×ranGC+˙aAFaGa=aA+˙FaGa
20 df-ov Fa+˙Ga=+˙FaGa
21 20 eqcomi +˙FaGa=Fa+˙Ga
22 21 mpteq2i aA+˙FaGa=aAFa+˙Ga
23 19 22 eqtrdi FFnAGFnAFVGW+˙FnCranF×ranGC+˙aAFaGa=aAFa+˙Ga
24 offval3 FVGWF+˙fG=adomFdomGFa+˙Ga
25 fndm FFnAdomF=A
26 fndm GFnAdomG=A
27 25 26 ineqan12d FFnAGFnAdomFdomG=AA
28 inidm AA=A
29 27 28 eqtrdi FFnAGFnAdomFdomG=A
30 29 mpteq1d FFnAGFnAadomFdomGFa+˙Ga=aAFa+˙Ga
31 24 30 sylan9eqr FFnAGFnAFVGWF+˙fG=aAFa+˙Ga
32 31 eqcomd FFnAGFnAFVGWaAFa+˙Ga=F+˙fG
33 32 3adant3 FFnAGFnAFVGW+˙FnCranF×ranGCaAFa+˙Ga=F+˙fG
34 5 23 33 3eqtrd FFnAGFnAFVGW+˙FnCranF×ranGC+˙HS=F+˙fG