Metamath Proof Explorer


Theorem offval

Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Hypotheses offval.1 φFFnA
offval.2 φGFnB
offval.3 φAV
offval.4 φBW
offval.5 AB=S
offval.6 φxAFx=C
offval.7 φxBGx=D
Assertion offval φFRfG=xSCRD

Proof

Step Hyp Ref Expression
1 offval.1 φFFnA
2 offval.2 φGFnB
3 offval.3 φAV
4 offval.4 φBW
5 offval.5 AB=S
6 offval.6 φxAFx=C
7 offval.7 φxBGx=D
8 fnex FFnAAVFV
9 1 3 8 syl2anc φFV
10 fnex GFnBBWGV
11 2 4 10 syl2anc φGV
12 1 fndmd φdomF=A
13 2 fndmd φdomG=B
14 12 13 ineq12d φdomFdomG=AB
15 14 5 eqtrdi φdomFdomG=S
16 15 mpteq1d φxdomFdomGFxRGx=xSFxRGx
17 inex1g AVABV
18 5 17 eqeltrrid AVSV
19 mptexg SVxSFxRGxV
20 3 18 19 3syl φxSFxRGxV
21 16 20 eqeltrd φxdomFdomGFxRGxV
22 dmeq f=Fdomf=domF
23 dmeq g=Gdomg=domG
24 22 23 ineqan12d f=Fg=Gdomfdomg=domFdomG
25 fveq1 f=Ffx=Fx
26 fveq1 g=Ggx=Gx
27 25 26 oveqan12d f=Fg=GfxRgx=FxRGx
28 24 27 mpteq12dv f=Fg=GxdomfdomgfxRgx=xdomFdomGFxRGx
29 df-of fR=fV,gVxdomfdomgfxRgx
30 28 29 ovmpoga FVGVxdomFdomGFxRGxVFRfG=xdomFdomGFxRGx
31 9 11 21 30 syl3anc φFRfG=xdomFdomGFxRGx
32 5 eleq2i xABxS
33 elin xABxAxB
34 32 33 bitr3i xSxAxB
35 6 adantrr φxAxBFx=C
36 7 adantrl φxAxBGx=D
37 35 36 oveq12d φxAxBFxRGx=CRD
38 34 37 sylan2b φxSFxRGx=CRD
39 38 mpteq2dva φxSFxRGx=xSCRD
40 31 16 39 3eqtrd φFRfG=xSCRD