Metamath Proof Explorer


Theorem ofpreima2

Description: Express the preimage of a function operation as a union of preimages. This version of ofpreima iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018)

Ref Expression
Hypotheses ofpreima.1 φF:AB
ofpreima.2 φG:AC
ofpreima.3 φAV
ofpreima.4 φRFnB×C
Assertion ofpreima2 φFRfG-1D=pR-1DranF×ranGF-11stpG-12ndp

Proof

Step Hyp Ref Expression
1 ofpreima.1 φF:AB
2 ofpreima.2 φG:AC
3 ofpreima.3 φAV
4 ofpreima.4 φRFnB×C
5 1 2 3 4 ofpreima φFRfG-1D=pR-1DF-11stpG-12ndp
6 inundif R-1DranF×ranGR-1DranF×ranG=R-1D
7 iuneq1 R-1DranF×ranGR-1DranF×ranG=R-1DpR-1DranF×ranGR-1DranF×ranGF-11stpG-12ndp=pR-1DF-11stpG-12ndp
8 6 7 ax-mp pR-1DranF×ranGR-1DranF×ranGF-11stpG-12ndp=pR-1DF-11stpG-12ndp
9 iunxun pR-1DranF×ranGR-1DranF×ranGF-11stpG-12ndp=pR-1DranF×ranGF-11stpG-12ndppR-1DranF×ranGF-11stpG-12ndp
10 8 9 eqtr3i pR-1DF-11stpG-12ndp=pR-1DranF×ranGF-11stpG-12ndppR-1DranF×ranGF-11stpG-12ndp
11 5 10 eqtrdi φFRfG-1D=pR-1DranF×ranGF-11stpG-12ndppR-1DranF×ranGF-11stpG-12ndp
12 simpr φpR-1DranF×ranGpR-1DranF×ranG
13 12 eldifbd φpR-1DranF×ranG¬pranF×ranG
14 cnvimass R-1DdomR
15 4 fndmd φdomR=B×C
16 14 15 sseqtrid φR-1DB×C
17 16 ssdifssd φR-1DranF×ranGB×C
18 17 sselda φpR-1DranF×ranGpB×C
19 1st2nd2 pB×Cp=1stp2ndp
20 elxp6 pranF×ranGp=1stp2ndp1stpranF2ndpranG
21 20 simplbi2 p=1stp2ndp1stpranF2ndpranGpranF×ranG
22 18 19 21 3syl φpR-1DranF×ranG1stpranF2ndpranGpranF×ranG
23 13 22 mtod φpR-1DranF×ranG¬1stpranF2ndpranG
24 ianor ¬1stpranF2ndpranG¬1stpranF¬2ndpranG
25 23 24 sylib φpR-1DranF×ranG¬1stpranF¬2ndpranG
26 disjsn ranF1stp=¬1stpranF
27 disjsn ranG2ndp=¬2ndpranG
28 26 27 orbi12i ranF1stp=ranG2ndp=¬1stpranF¬2ndpranG
29 25 28 sylibr φpR-1DranF×ranGranF1stp=ranG2ndp=
30 1 ffnd φFFnA
31 dffn3 FFnAF:AranF
32 30 31 sylib φF:AranF
33 2 ffnd φGFnA
34 dffn3 GFnAG:AranG
35 33 34 sylib φG:AranG
36 35 adantr φpR-1DranF×ranGG:AranG
37 fimacnvdisj F:AranFranF1stp=F-11stp=
38 ineq1 F-11stp=F-11stpG-12ndp=G-12ndp
39 0in G-12ndp=
40 38 39 eqtrdi F-11stp=F-11stpG-12ndp=
41 37 40 syl F:AranFranF1stp=F-11stpG-12ndp=
42 41 ex F:AranFranF1stp=F-11stpG-12ndp=
43 fimacnvdisj G:AranGranG2ndp=G-12ndp=
44 ineq2 G-12ndp=F-11stpG-12ndp=F-11stp
45 in0 F-11stp=
46 44 45 eqtrdi G-12ndp=F-11stpG-12ndp=
47 43 46 syl G:AranGranG2ndp=F-11stpG-12ndp=
48 47 ex G:AranGranG2ndp=F-11stpG-12ndp=
49 42 48 jaao F:AranFG:AranGranF1stp=ranG2ndp=F-11stpG-12ndp=
50 32 36 49 syl2an2r φpR-1DranF×ranGranF1stp=ranG2ndp=F-11stpG-12ndp=
51 29 50 mpd φpR-1DranF×ranGF-11stpG-12ndp=
52 51 iuneq2dv φpR-1DranF×ranGF-11stpG-12ndp=pR-1DranF×ranG
53 iun0 pR-1DranF×ranG=
54 52 53 eqtrdi φpR-1DranF×ranGF-11stpG-12ndp=
55 54 uneq2d φpR-1DranF×ranGF-11stpG-12ndppR-1DranF×ranGF-11stpG-12ndp=pR-1DranF×ranGF-11stpG-12ndp
56 un0 pR-1DranF×ranGF-11stpG-12ndp=pR-1DranF×ranGF-11stpG-12ndp
57 55 56 eqtrdi φpR-1DranF×ranGF-11stpG-12ndppR-1DranF×ranGF-11stpG-12ndp=pR-1DranF×ranGF-11stpG-12ndp
58 11 57 eqtrd φFRfG-1D=pR-1DranF×ranGF-11stpG-12ndp