Description: Express the preimage of a function operation as a union of preimages. This version of ofpreima iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ofpreima.1 | |
|
ofpreima.2 | |
||
ofpreima.3 | |
||
ofpreima.4 | |
||
Assertion | ofpreima2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofpreima.1 | |
|
2 | ofpreima.2 | |
|
3 | ofpreima.3 | |
|
4 | ofpreima.4 | |
|
5 | 1 2 3 4 | ofpreima | |
6 | inundif | |
|
7 | iuneq1 | |
|
8 | 6 7 | ax-mp | |
9 | iunxun | |
|
10 | 8 9 | eqtr3i | |
11 | 5 10 | eqtrdi | |
12 | simpr | |
|
13 | 12 | eldifbd | |
14 | cnvimass | |
|
15 | 4 | fndmd | |
16 | 14 15 | sseqtrid | |
17 | 16 | ssdifssd | |
18 | 17 | sselda | |
19 | 1st2nd2 | |
|
20 | elxp6 | |
|
21 | 20 | simplbi2 | |
22 | 18 19 21 | 3syl | |
23 | 13 22 | mtod | |
24 | ianor | |
|
25 | 23 24 | sylib | |
26 | disjsn | |
|
27 | disjsn | |
|
28 | 26 27 | orbi12i | |
29 | 25 28 | sylibr | |
30 | 1 | ffnd | |
31 | dffn3 | |
|
32 | 30 31 | sylib | |
33 | 2 | ffnd | |
34 | dffn3 | |
|
35 | 33 34 | sylib | |
36 | 35 | adantr | |
37 | fimacnvdisj | |
|
38 | ineq1 | |
|
39 | 0in | |
|
40 | 38 39 | eqtrdi | |
41 | 37 40 | syl | |
42 | 41 | ex | |
43 | fimacnvdisj | |
|
44 | ineq2 | |
|
45 | in0 | |
|
46 | 44 45 | eqtrdi | |
47 | 43 46 | syl | |
48 | 47 | ex | |
49 | 42 48 | jaao | |
50 | 32 36 49 | syl2an2r | |
51 | 29 50 | mpd | |
52 | 51 | iuneq2dv | |
53 | iun0 | |
|
54 | 52 53 | eqtrdi | |
55 | 54 | uneq2d | |
56 | un0 | |
|
57 | 55 56 | eqtrdi | |
58 | 11 57 | eqtrd | |