Metamath Proof Explorer


Theorem omsfval

Description: Value of the outer measure evaluated for a given set A . (Contributed by Thierry Arnoux, 15-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion omsfval Q V R : Q 0 +∞ A Q toOMeas R A = sup ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞ <

Proof

Step Hyp Ref Expression
1 simp2 Q V R : Q 0 +∞ A Q R : Q 0 +∞
2 simp1 Q V R : Q 0 +∞ A Q Q V
3 1 2 fexd Q V R : Q 0 +∞ A Q R V
4 omsval R V toOMeas R = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
5 3 4 syl Q V R : Q 0 +∞ A Q toOMeas R = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
6 simpr Q V R : Q 0 +∞ A Q a = A a = A
7 6 sseq1d Q V R : Q 0 +∞ A Q a = A a z A z
8 7 anbi1d Q V R : Q 0 +∞ A Q a = A a z z ω A z z ω
9 8 rabbidv Q V R : Q 0 +∞ A Q a = A z 𝒫 dom R | a z z ω = z 𝒫 dom R | A z z ω
10 9 mpteq1d Q V R : Q 0 +∞ A Q a = A x z 𝒫 dom R | a z z ω * y x R y = x z 𝒫 dom R | A z z ω * y x R y
11 10 rneqd Q V R : Q 0 +∞ A Q a = A ran x z 𝒫 dom R | a z z ω * y x R y = ran x z 𝒫 dom R | A z z ω * y x R y
12 11 infeq1d Q V R : Q 0 +∞ A Q a = A sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ < = sup ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞ <
13 simp3 Q V R : Q 0 +∞ A Q A Q
14 fdm R : Q 0 +∞ dom R = Q
15 14 3ad2ant2 Q V R : Q 0 +∞ A Q dom R = Q
16 15 unieqd Q V R : Q 0 +∞ A Q dom R = Q
17 13 16 sseqtrrd Q V R : Q 0 +∞ A Q A dom R
18 2 uniexd Q V R : Q 0 +∞ A Q Q V
19 ssexg A Q Q V A V
20 13 18 19 syl2anc Q V R : Q 0 +∞ A Q A V
21 elpwg A V A 𝒫 dom R A dom R
22 20 21 syl Q V R : Q 0 +∞ A Q A 𝒫 dom R A dom R
23 17 22 mpbird Q V R : Q 0 +∞ A Q A 𝒫 dom R
24 xrltso < Or *
25 iccssxr 0 +∞ *
26 soss 0 +∞ * < Or * < Or 0 +∞
27 25 26 ax-mp < Or * < Or 0 +∞
28 24 27 mp1i Q V R : Q 0 +∞ A Q < Or 0 +∞
29 28 infexd Q V R : Q 0 +∞ A Q sup ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞ < V
30 5 12 23 29 fvmptd Q V R : Q 0 +∞ A Q toOMeas R A = sup ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞ <