Metamath Proof Explorer


Theorem onomeneq

Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of TakeutiZaring p. 90 and its converse. (Contributed by NM, 26-Jul-2004) Avoid ax-pow . (Revised by BTernaryTau, 2-Dec-2024)

Ref Expression
Assertion onomeneq AOnBωABA=B

Proof

Step Hyp Ref Expression
1 endom ABAB
2 nnfi BωBFin
3 domfi BFinABAFin
4 simpr BFinABAB
5 3 4 jca BFinABAFinAB
6 domnsymfi AFinAB¬BA
7 6 ex AFinAB¬BA
8 php3 AFinBABA
9 8 ex AFinBABA
10 7 9 nsyld AFinAB¬BA
11 10 adantl BωAFinAB¬BA
12 11 expimpd BωAFinAB¬BA
13 5 12 syl5 BωBFinAB¬BA
14 2 13 mpand BωAB¬BA
15 14 adantl AOnBωAB¬BA
16 eloni AOnOrdA
17 nnord BωOrdB
18 ordtri1 OrdAOrdBAB¬BA
19 ordelpss OrdBOrdABABA
20 19 ancoms OrdAOrdBBABA
21 20 notbid OrdAOrdB¬BA¬BA
22 18 21 bitrd OrdAOrdBAB¬BA
23 16 17 22 syl2an AOnBωAB¬BA
24 15 23 sylibrd AOnBωABAB
25 1 24 syl5 AOnBωABAB
26 25 3impia AOnBωABAB
27 ensymfib BFinBAAB
28 2 27 syl BωBAAB
29 endom BABA
30 28 29 syl6bir BωABBA
31 30 imp BωABBA
32 31 3adant1 AOnBωABBA
33 nndomog BωAOnBABA
34 33 ancoms AOnBωBABA
35 34 biimp3a AOnBωBABA
36 32 35 syld3an3 AOnBωABBA
37 26 36 eqssd AOnBωABA=B
38 37 3expia AOnBωABA=B
39 enrefnn BωBB
40 breq1 A=BABBB
41 39 40 syl5ibrcom BωA=BAB
42 41 adantl AOnBωA=BAB
43 38 42 impbid AOnBωABA=B