| Step | Hyp | Ref | Expression | 
						
							| 1 |  | endom |  | 
						
							| 2 |  | nnfi |  | 
						
							| 3 |  | domfi |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 | 3 4 | jca |  | 
						
							| 6 |  | domnsymfi |  | 
						
							| 7 | 6 | ex |  | 
						
							| 8 |  | php3 |  | 
						
							| 9 | 8 | ex |  | 
						
							| 10 | 7 9 | nsyld |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 | 11 | expimpd |  | 
						
							| 13 | 5 12 | syl5 |  | 
						
							| 14 | 2 13 | mpand |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 |  | eloni |  | 
						
							| 17 |  | nnord |  | 
						
							| 18 |  | ordtri1 |  | 
						
							| 19 |  | ordelpss |  | 
						
							| 20 | 19 | ancoms |  | 
						
							| 21 | 20 | notbid |  | 
						
							| 22 | 18 21 | bitrd |  | 
						
							| 23 | 16 17 22 | syl2an |  | 
						
							| 24 | 15 23 | sylibrd |  | 
						
							| 25 | 1 24 | syl5 |  | 
						
							| 26 | 25 | 3impia |  | 
						
							| 27 |  | ensymfib |  | 
						
							| 28 | 2 27 | syl |  | 
						
							| 29 |  | endom |  | 
						
							| 30 | 28 29 | biimtrrdi |  | 
						
							| 31 | 30 | imp |  | 
						
							| 32 | 31 | 3adant1 |  | 
						
							| 33 |  | nndomog |  | 
						
							| 34 | 33 | ancoms |  | 
						
							| 35 | 34 | biimp3a |  | 
						
							| 36 | 32 35 | syld3an3 |  | 
						
							| 37 | 26 36 | eqssd |  | 
						
							| 38 | 37 | 3expia |  | 
						
							| 39 |  | enrefnn |  | 
						
							| 40 |  | breq1 |  | 
						
							| 41 | 39 40 | syl5ibrcom |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 | 38 42 | impbid |  |