Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of TakeutiZaring p. 90 and its converse. (Contributed by NM, 26-Jul-2004) Avoid ax-pow . (Revised by BTernaryTau, 2-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | onomeneq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom | |
|
2 | nnfi | |
|
3 | domfi | |
|
4 | simpr | |
|
5 | 3 4 | jca | |
6 | domnsymfi | |
|
7 | 6 | ex | |
8 | php3 | |
|
9 | 8 | ex | |
10 | 7 9 | nsyld | |
11 | 10 | adantl | |
12 | 11 | expimpd | |
13 | 5 12 | syl5 | |
14 | 2 13 | mpand | |
15 | 14 | adantl | |
16 | eloni | |
|
17 | nnord | |
|
18 | ordtri1 | |
|
19 | ordelpss | |
|
20 | 19 | ancoms | |
21 | 20 | notbid | |
22 | 18 21 | bitrd | |
23 | 16 17 22 | syl2an | |
24 | 15 23 | sylibrd | |
25 | 1 24 | syl5 | |
26 | 25 | 3impia | |
27 | ensymfib | |
|
28 | 2 27 | syl | |
29 | endom | |
|
30 | 28 29 | syl6bir | |
31 | 30 | imp | |
32 | 31 | 3adant1 | |
33 | nndomog | |
|
34 | 33 | ancoms | |
35 | 34 | biimp3a | |
36 | 32 35 | syld3an3 | |
37 | 26 36 | eqssd | |
38 | 37 | 3expia | |
39 | enrefnn | |
|
40 | breq1 | |
|
41 | 39 40 | syl5ibrcom | |
42 | 41 | adantl | |
43 | 38 42 | impbid | |