| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddz |
|
| 2 |
|
evenz |
|
| 3 |
|
zaddcl |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
eqeq1 |
|
| 6 |
5
|
rexbidv |
|
| 7 |
|
dfodd6 |
|
| 8 |
6 7
|
elrab2 |
|
| 9 |
|
eqeq1 |
|
| 10 |
9
|
rexbidv |
|
| 11 |
|
dfeven4 |
|
| 12 |
10 11
|
elrab2 |
|
| 13 |
|
zaddcl |
|
| 14 |
13
|
ex |
|
| 15 |
14
|
ad3antlr |
|
| 16 |
15
|
imp |
|
| 17 |
16
|
adantr |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
oveq1d |
|
| 20 |
19
|
eqeq2d |
|
| 21 |
20
|
adantl |
|
| 22 |
|
oveq12 |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
ad3antlr |
|
| 25 |
24
|
imp |
|
| 26 |
|
2cnd |
|
| 27 |
|
zcn |
|
| 28 |
27
|
adantl |
|
| 29 |
26 28
|
mulcld |
|
| 30 |
29
|
ancoms |
|
| 31 |
|
1cnd |
|
| 32 |
|
2cnd |
|
| 33 |
|
zcn |
|
| 34 |
|
mulcl |
|
| 35 |
32 33 34
|
syl2an |
|
| 36 |
30 31 35
|
add32d |
|
| 37 |
|
2cnd |
|
| 38 |
27
|
adantr |
|
| 39 |
33
|
adantl |
|
| 40 |
37 38 39
|
adddid |
|
| 41 |
40
|
eqcomd |
|
| 42 |
41
|
oveq1d |
|
| 43 |
36 42
|
eqtrd |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
ad3antlr |
|
| 46 |
45
|
imp |
|
| 47 |
46
|
adantr |
|
| 48 |
25 47
|
eqtrd |
|
| 49 |
17 21 48
|
rspcedvd |
|
| 50 |
49
|
rexlimdva2 |
|
| 51 |
50
|
expimpd |
|
| 52 |
51
|
r19.29an |
|
| 53 |
12 52
|
biimtrid |
|
| 54 |
8 53
|
sylbi |
|
| 55 |
54
|
imp |
|
| 56 |
|
eqeq1 |
|
| 57 |
56
|
rexbidv |
|
| 58 |
|
dfodd6 |
|
| 59 |
57 58
|
elrab2 |
|
| 60 |
4 55 59
|
sylanbrc |
|