Metamath Proof Explorer


Theorem opiota

Description: The property of a uniquely specified ordered pair. The proof uses properties of the iota description binder. (Contributed by Mario Carneiro, 21-May-2015)

Ref Expression
Hypotheses opiota.1 I=ιz|xAyBz=xyφ
opiota.2 X=1stI
opiota.3 Y=2ndI
opiota.4 x=Cφψ
opiota.5 y=Dψχ
Assertion opiota ∃!zxAyBz=xyφCADBχC=XD=Y

Proof

Step Hyp Ref Expression
1 opiota.1 I=ιz|xAyBz=xyφ
2 opiota.2 X=1stI
3 opiota.3 Y=2ndI
4 opiota.4 x=Cφψ
5 opiota.5 y=Dψχ
6 4 5 ceqsrex2v CADBxAyBx=Cy=Dφχ
7 6 bicomd CADBχxAyBx=Cy=Dφ
8 opex CDV
9 8 a1i ∃!zxAyBz=xyφCDV
10 id ∃!zxAyBz=xyφ∃!zxAyBz=xyφ
11 eqeq1 z=CDz=xyCD=xy
12 eqcom CD=xyxy=CD
13 vex xV
14 vex yV
15 13 14 opth xy=CDx=Cy=D
16 12 15 bitri CD=xyx=Cy=D
17 11 16 bitrdi z=CDz=xyx=Cy=D
18 17 anbi1d z=CDz=xyφx=Cy=Dφ
19 18 2rexbidv z=CDxAyBz=xyφxAyBx=Cy=Dφ
20 19 adantl ∃!zxAyBz=xyφz=CDxAyBz=xyφxAyBx=Cy=Dφ
21 nfeu1 z∃!zxAyBz=xyφ
22 nfvd ∃!zxAyBz=xyφzxAyBx=Cy=Dφ
23 nfcvd ∃!zxAyBz=xyφ_zCD
24 9 10 20 21 22 23 iota2df ∃!zxAyBz=xyφxAyBx=Cy=Dφιz|xAyBz=xyφ=CD
25 eqcom CD=II=CD
26 1 eqeq1i I=CDιz|xAyBz=xyφ=CD
27 25 26 bitri CD=Iιz|xAyBz=xyφ=CD
28 24 27 bitr4di ∃!zxAyBz=xyφxAyBx=Cy=DφCD=I
29 7 28 sylan9bbr ∃!zxAyBz=xyφCADBχCD=I
30 29 pm5.32da ∃!zxAyBz=xyφCADBχCADBCD=I
31 opelxpi xAyBxyA×B
32 simpl z=xyφz=xy
33 32 eleq1d z=xyφzA×BxyA×B
34 31 33 syl5ibrcom xAyBz=xyφzA×B
35 34 rexlimivv xAyBz=xyφzA×B
36 35 abssi z|xAyBz=xyφA×B
37 iotacl ∃!zxAyBz=xyφιz|xAyBz=xyφz|xAyBz=xyφ
38 36 37 sselid ∃!zxAyBz=xyφιz|xAyBz=xyφA×B
39 1 38 eqeltrid ∃!zxAyBz=xyφIA×B
40 opelxp CDA×BCADB
41 eleq1 CD=ICDA×BIA×B
42 40 41 bitr3id CD=ICADBIA×B
43 39 42 syl5ibrcom ∃!zxAyBz=xyφCD=ICADB
44 43 pm4.71rd ∃!zxAyBz=xyφCD=ICADBCD=I
45 1st2nd2 IA×BI=1stI2ndI
46 39 45 syl ∃!zxAyBz=xyφI=1stI2ndI
47 46 eqeq2d ∃!zxAyBz=xyφCD=ICD=1stI2ndI
48 30 44 47 3bitr2d ∃!zxAyBz=xyφCADBχCD=1stI2ndI
49 df-3an CADBχCADBχ
50 2 eqeq2i C=XC=1stI
51 3 eqeq2i D=YD=2ndI
52 50 51 anbi12i C=XD=YC=1stID=2ndI
53 fvex 1stIV
54 fvex 2ndIV
55 53 54 opth2 CD=1stI2ndIC=1stID=2ndI
56 52 55 bitr4i C=XD=YCD=1stI2ndI
57 48 49 56 3bitr4g ∃!zxAyBz=xyφCADBχC=XD=Y