Metamath Proof Explorer


Theorem oppfdiag1

Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses oppfdiag.o O = oppCat C
oppfdiag.p P = oppCat D
oppfdiag.l L = C Δ func D
oppfdiag.c φ C Cat
oppfdiag.d φ D Cat
oppfdiag1.f No typesetting found for |- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) with typecode |-
oppfdiag1.a A = Base C
oppfdiag1.x φ X A
Assertion oppfdiag1 φ F 1 st L X = 1 st O Δ func P X

Proof

Step Hyp Ref Expression
1 oppfdiag.o O = oppCat C
2 oppfdiag.p P = oppCat D
3 oppfdiag.l L = C Δ func D
4 oppfdiag.c φ C Cat
5 oppfdiag.d φ D Cat
6 oppfdiag1.f Could not format ( ph -> F = ( oppFunc |` ( D Func C ) ) ) : No typesetting found for |- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) with typecode |-
7 oppfdiag1.a A = Base C
8 oppfdiag1.x φ X A
9 eqid D FuncCat C = D FuncCat C
10 9 fucbas D Func C = Base D FuncCat C
11 3 4 5 9 diagcl φ L C Func D FuncCat C
12 11 func1st2nd φ 1 st L C Func D FuncCat C 2 nd L
13 7 10 12 funcf1 φ 1 st L : A D Func C
14 13 8 ffvelcdmd φ 1 st L X D Func C
15 6 14 opf11 φ 1 st F 1 st L X = 1 st 1 st L X
16 eqid Base D = Base D
17 2 16 oppcbas Base D = Base P
18 1 7 oppcbas A = Base O
19 eqid oppCat D FuncCat C = oppCat D FuncCat C
20 1 19 11 oppfoppc2 Could not format ( ph -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) : No typesetting found for |- ( ph -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) with typecode |-
21 eqid P FuncCat O = P FuncCat O
22 eqid D Nat C = D Nat C
23 eqidd φ m D Func C , n D Func C I n D Nat C m = m D Func C , n D Func C I n D Nat C m
24 2 1 9 19 21 22 6 23 5 4 fucoppcfunc φ F oppCat D FuncCat C Func P FuncCat O m D Func C , n D Func C I n D Nat C m
25 df-br F oppCat D FuncCat C Func P FuncCat O m D Func C , n D Func C I n D Nat C m F m D Func C , n D Func C I n D Nat C m oppCat D FuncCat C Func P FuncCat O
26 24 25 sylib φ F m D Func C , n D Func C I n D Nat C m oppCat D FuncCat C Func P FuncCat O
27 18 20 26 8 cofu1 Could not format ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) = ( ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` X ) ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) = ( ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` X ) ) ) with typecode |-
28 24 func1st φ 1 st F m D Func C , n D Func C I n D Nat C m = F
29 11 oppf1 Could not format ( ph -> ( 1st ` ( oppFunc ` L ) ) = ( 1st ` L ) ) : No typesetting found for |- ( ph -> ( 1st ` ( oppFunc ` L ) ) = ( 1st ` L ) ) with typecode |-
30 29 fveq1d Could not format ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` X ) = ( ( 1st ` L ) ` X ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` X ) = ( ( 1st ` L ) ` X ) ) with typecode |-
31 28 30 fveq12d Could not format ( ph -> ( ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` X ) ) = ( F ` ( ( 1st ` L ) ` X ) ) ) : No typesetting found for |- ( ph -> ( ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` X ) ) = ( F ` ( ( 1st ` L ) ` X ) ) ) with typecode |-
32 27 31 eqtrd Could not format ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) = ( F ` ( ( 1st ` L ) ` X ) ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) = ( F ` ( ( 1st ` L ) ` X ) ) ) with typecode |-
33 21 fucbas P Func O = Base P FuncCat O
34 20 26 cofucl Could not format ( ph -> ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) : No typesetting found for |- ( ph -> ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) with typecode |-
35 34 func1st2nd Could not format ( ph -> ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ) with typecode |-
36 18 33 35 funcf1 Could not format ( ph -> ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) : A --> ( P Func O ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) : A --> ( P Func O ) ) with typecode |-
37 36 8 ffvelcdmd Could not format ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) e. ( P Func O ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) e. ( P Func O ) ) with typecode |-
38 32 37 eqeltrrd φ F 1 st L X P Func O
39 38 func1st2nd φ 1 st F 1 st L X P Func O 2 nd F 1 st L X
40 17 18 39 funcf1 φ 1 st F 1 st L X : Base D A
41 15 40 feq1dd φ 1 st 1 st L X : Base D A
42 41 ffnd φ 1 st 1 st L X Fn Base D
43 eqid O Δ func P = O Δ func P
44 1 oppccat C Cat O Cat
45 4 44 syl φ O Cat
46 2 oppccat D Cat P Cat
47 5 46 syl φ P Cat
48 43 45 47 21 diagcl φ O Δ func P O Func P FuncCat O
49 48 func1st2nd φ 1 st O Δ func P O Func P FuncCat O 2 nd O Δ func P
50 18 33 49 funcf1 φ 1 st O Δ func P : A P Func O
51 50 8 ffvelcdmd φ 1 st O Δ func P X P Func O
52 51 func1st2nd φ 1 st 1 st O Δ func P X P Func O 2 nd 1 st O Δ func P X
53 17 18 52 funcf1 φ 1 st 1 st O Δ func P X : Base D A
54 53 ffnd φ 1 st 1 st O Δ func P X Fn Base D
55 4 adantr φ y Base D C Cat
56 5 adantr φ y Base D D Cat
57 8 adantr φ y Base D X A
58 eqid 1 st L X = 1 st L X
59 simpr φ y Base D y Base D
60 3 55 56 7 57 58 16 59 diag11 φ y Base D 1 st 1 st L X y = X
61 45 adantr φ y Base D O Cat
62 47 adantr φ y Base D P Cat
63 eqid 1 st O Δ func P X = 1 st O Δ func P X
64 43 61 62 18 57 63 17 59 diag11 φ y Base D 1 st 1 st O Δ func P X y = X
65 60 64 eqtr4d φ y Base D 1 st 1 st L X y = 1 st 1 st O Δ func P X y
66 42 54 65 eqfnfvd φ 1 st 1 st L X = 1 st 1 st O Δ func P X
67 15 66 eqtrd φ 1 st F 1 st L X = 1 st 1 st O Δ func P X
68 17 39 funcfn2 φ 2 nd F 1 st L X Fn Base D × Base D
69 17 52 funcfn2 φ 2 nd 1 st O Δ func P X Fn Base D × Base D
70 6 14 opf12 φ y 2 nd F 1 st L X z = z 2 nd 1 st L X y
71 70 adantr φ y Base D z Base D y 2 nd F 1 st L X z = z 2 nd 1 st L X y
72 eqid Hom D = Hom D
73 72 2 oppchom y Hom P z = z Hom D y
74 73 a1i φ y Base D z Base D y Hom P z = z Hom D y
75 eqid Hom P = Hom P
76 eqid Hom O = Hom O
77 39 adantr φ y Base D z Base D 1 st F 1 st L X P Func O 2 nd F 1 st L X
78 simprl φ y Base D z Base D y Base D
79 simprr φ y Base D z Base D z Base D
80 17 75 76 77 78 79 funcf2 φ y Base D z Base D y 2 nd F 1 st L X z : y Hom P z 1 st F 1 st L X y Hom O 1 st F 1 st L X z
81 74 80 feq2dd φ y Base D z Base D y 2 nd F 1 st L X z : z Hom D y 1 st F 1 st L X y Hom O 1 st F 1 st L X z
82 71 81 feq1dd φ y Base D z Base D z 2 nd 1 st L X y : z Hom D y 1 st F 1 st L X y Hom O 1 st F 1 st L X z
83 82 ffnd φ y Base D z Base D z 2 nd 1 st L X y Fn z Hom D y
84 52 adantr φ y Base D z Base D 1 st 1 st O Δ func P X P Func O 2 nd 1 st O Δ func P X
85 17 75 76 84 78 79 funcf2 φ y Base D z Base D y 2 nd 1 st O Δ func P X z : y Hom P z 1 st 1 st O Δ func P X y Hom O 1 st 1 st O Δ func P X z
86 74 85 feq2dd φ y Base D z Base D y 2 nd 1 st O Δ func P X z : z Hom D y 1 st 1 st O Δ func P X y Hom O 1 st 1 st O Δ func P X z
87 86 ffnd φ y Base D z Base D y 2 nd 1 st O Δ func P X z Fn z Hom D y
88 eqid Id C = Id C
89 1 88 oppcid C Cat Id O = Id C
90 4 89 syl φ Id O = Id C
91 90 fveq1d φ Id O X = Id C X
92 91 ad2antrr φ y Base D z Base D f z Hom D y Id O X = Id C X
93 4 ad2antrr φ y Base D z Base D f z Hom D y C Cat
94 93 44 syl φ y Base D z Base D f z Hom D y O Cat
95 5 ad2antrr φ y Base D z Base D f z Hom D y D Cat
96 95 46 syl φ y Base D z Base D f z Hom D y P Cat
97 8 ad2antrr φ y Base D z Base D f z Hom D y X A
98 78 adantr φ y Base D z Base D f z Hom D y y Base D
99 eqid Id O = Id O
100 79 adantr φ y Base D z Base D f z Hom D y z Base D
101 simpr φ y Base D z Base D f z Hom D y f z Hom D y
102 101 73 eleqtrrdi φ y Base D z Base D f z Hom D y f y Hom P z
103 43 94 96 18 97 63 17 98 75 99 100 102 diag12 φ y Base D z Base D f z Hom D y y 2 nd 1 st O Δ func P X z f = Id O X
104 3 93 95 7 97 58 16 100 72 88 98 101 diag12 φ y Base D z Base D f z Hom D y z 2 nd 1 st L X y f = Id C X
105 92 103 104 3eqtr4rd φ y Base D z Base D f z Hom D y z 2 nd 1 st L X y f = y 2 nd 1 st O Δ func P X z f
106 83 87 105 eqfnfvd φ y Base D z Base D z 2 nd 1 st L X y = y 2 nd 1 st O Δ func P X z
107 71 106 eqtrd φ y Base D z Base D y 2 nd F 1 st L X z = y 2 nd 1 st O Δ func P X z
108 68 69 107 eqfnovd φ 2 nd F 1 st L X = 2 nd 1 st O Δ func P X
109 67 108 opeq12d φ 1 st F 1 st L X 2 nd F 1 st L X = 1 st 1 st O Δ func P X 2 nd 1 st O Δ func P X
110 relfunc Rel P Func O
111 1st2nd Rel P Func O F 1 st L X P Func O F 1 st L X = 1 st F 1 st L X 2 nd F 1 st L X
112 110 38 111 sylancr φ F 1 st L X = 1 st F 1 st L X 2 nd F 1 st L X
113 1st2nd Rel P Func O 1 st O Δ func P X P Func O 1 st O Δ func P X = 1 st 1 st O Δ func P X 2 nd 1 st O Δ func P X
114 110 51 113 sylancr φ 1 st O Δ func P X = 1 st 1 st O Δ func P X 2 nd 1 st O Δ func P X
115 109 112 114 3eqtr4d φ F 1 st L X = 1 st O Δ func P X