Metamath Proof Explorer


Theorem opphl

Description: If two points A and C lie on opposite sides of a line D , then any point of the half line ( R A ) also lies opposite to C . Theorem 9.5 of Schwabhauser p. 69. (Contributed by Thierry Arnoux, 3-Mar-2019)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
opphl.k K=hl𝒢G
opphl.a φAP
opphl.b φBP
opphl.c φCP
opphl.1 φAOC
opphl.2 φRD
opphl.3 φAKRB
Assertion opphl φBOC

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 opphl.k K=hl𝒢G
9 opphl.a φAP
10 opphl.b φBP
11 opphl.c φCP
12 opphl.1 φAOC
13 opphl.2 φRD
14 opphl.3 φAKRB
15 6 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDDranL
16 7 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDG𝒢Tarski
17 eqid pInv𝒢Gm=pInv𝒢Gm
18 10 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDBP
19 eqid pInv𝒢G=pInv𝒢G
20 simp-4r φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDmP
21 9 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDAP
22 1 2 3 5 19 16 20 17 21 mircl φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDpInv𝒢GmAP
23 simplr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDyD
24 simp-6r φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDzD
25 13 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDRD
26 11 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDCP
27 simp-8r φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDxD
28 12 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDAOC
29 simp-7r φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDALx𝒢GD
30 5 16 29 perpln1 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDALxranL
31 1 2 3 5 16 30 15 29 perpcom φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDD𝒢GALx
32 simp-5r φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDCLz𝒢GD
33 5 16 32 perpln1 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDCLzranL
34 1 2 3 5 16 33 15 32 perpcom φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDD𝒢GCLz
35 1 5 3 16 15 27 tglnpt φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDxP
36 1 3 5 16 21 35 30 tglnne φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDAx
37 1 3 8 21 21 35 16 36 hlid φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDAKxA
38 simpllr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDz=pInv𝒢Gmx
39 38 eqcomd φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDpInv𝒢Gmx=z
40 1 2 3 4 5 15 16 8 17 21 26 27 24 20 28 31 34 21 39 opphllem6 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDAKxApInv𝒢GmAKzC
41 37 40 mpbid φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDpInv𝒢GmAKzC
42 1 2 3 4 5 15 16 8 17 21 26 27 24 20 28 31 34 21 22 37 41 opphllem5 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDAOpInv𝒢GmA
43 39 24 eqeltrd φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDpInv𝒢GmxD
44 1 2 3 5 19 16 17 15 20 27 43 mirln2 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDmD
45 1 2 3 5 19 16 20 17 21 mirmir φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDpInv𝒢GmpInv𝒢GmA=A
46 45 eqcomd φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDA=pInv𝒢GmpInv𝒢GmA
47 1 5 3 7 6 13 tglnpt φRP
48 1 3 8 9 10 47 7 14 hlne1 φAR
49 48 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDAR
50 1 3 8 9 10 47 7 14 hlne2 φBR
51 50 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDBR
52 1 3 8 9 10 47 7 ishlg φAKRBARBRARIBBRIA
53 14 52 mpbid φARBRARIBBRIA
54 53 simp3d φARIBBRIA
55 54 ad8antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDARIBBRIA
56 1 2 3 4 5 15 16 17 21 18 22 25 42 44 46 49 51 55 opphllem2 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDBOpInv𝒢GmA
57 simpr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDBLy𝒢GD
58 5 16 57 perpln1 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDBLyranL
59 1 2 3 5 16 58 15 57 perpcom φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDD𝒢GBLy
60 1 5 3 16 15 24 tglnpt φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDzP
61 1 3 8 22 26 60 16 41 hlne1 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDpInv𝒢GmAz
62 1 3 8 22 26 60 16 5 41 hlln φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDpInv𝒢GmACLz
63 1 3 5 16 26 60 33 tglnne φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDCz
64 1 3 5 16 26 60 63 tglinerflx2 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDzCLz
65 1 3 5 16 22 60 61 61 33 62 64 tglinethru φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDCLz=pInv𝒢GmALz
66 34 65 breqtrd φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDD𝒢GpInv𝒢GmALz
67 1 5 3 16 15 23 tglnpt φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDyP
68 1 3 5 16 18 67 58 tglnne φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDBy
69 1 3 8 18 21 67 16 68 hlid φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDBKyB
70 1 3 8 22 26 60 16 41 hlcomd φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDCKzpInv𝒢GmA
71 1 2 3 4 5 15 16 8 17 18 22 23 24 20 56 59 66 18 26 69 70 opphllem5 φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GDBOC
72 1 2 3 4 5 6 7 9 11 12 oppne1 φ¬AD
73 1 3 8 9 10 47 7 5 14 hlln φABLR
74 73 adantr φBDABLR
75 7 adantr φBDG𝒢Tarski
76 10 adantr φBDBP
77 47 adantr φBDRP
78 50 adantr φBDBR
79 6 adantr φBDDranL
80 simpr φBDBD
81 13 adantr φBDRD
82 1 3 5 75 76 77 78 78 79 80 81 tglinethru φBDD=BLR
83 74 82 eleqtrrd φBDAD
84 72 83 mtand φ¬BD
85 1 2 3 5 7 6 10 84 footex φyDBLy𝒢GD
86 85 ad6antr φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxyDBLy𝒢GD
87 71 86 r19.29a φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢GmxBOC
88 7 ad4antr φxDALx𝒢GDzDCLz𝒢GDG𝒢Tarski
89 6 ad4antr φxDALx𝒢GDzDCLz𝒢GDDranL
90 simp-4r φxDALx𝒢GDzDCLz𝒢GDxD
91 1 5 3 88 89 90 tglnpt φxDALx𝒢GDzDCLz𝒢GDxP
92 simplr φxDALx𝒢GDzDCLz𝒢GDzD
93 1 5 3 88 89 92 tglnpt φxDALx𝒢GDzDCLz𝒢GDzP
94 1 2 3 4 5 6 7 9 11 12 opptgdim2 φGDim𝒢2
95 94 ad4antr φxDALx𝒢GDzDCLz𝒢GDGDim𝒢2
96 1 2 3 5 88 19 91 93 95 midex φxDALx𝒢GDzDCLz𝒢GDmPz=pInv𝒢Gmx
97 87 96 r19.29a φxDALx𝒢GDzDCLz𝒢GDBOC
98 1 2 3 4 5 6 7 9 11 12 oppne2 φ¬CD
99 1 2 3 5 7 6 11 98 footex φzDCLz𝒢GD
100 99 ad2antrr φxDALx𝒢GDzDCLz𝒢GD
101 97 100 r19.29a φxDALx𝒢GDBOC
102 1 2 3 5 7 6 9 72 footex φxDALx𝒢GD
103 101 102 r19.29a φBOC