Metamath Proof Explorer


Theorem opsqrlem4

Description: Lemma for opsqri . (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem2.1 THrmOp
opsqrlem2.2 S=xHrmOp,yHrmOpx+op12·opT-opxx
opsqrlem2.3 F=seq1S×0hop
Assertion opsqrlem4 F:HrmOp

Proof

Step Hyp Ref Expression
1 opsqrlem2.1 THrmOp
2 opsqrlem2.2 S=xHrmOp,yHrmOpx+op12·opT-opxx
3 opsqrlem2.3 F=seq1S×0hop
4 nnuz =1
5 1zzd 1
6 0hmop 0hopHrmOp
7 6 elexi 0hopV
8 7 fvconst2 z×0hopz=0hop
9 8 6 eqeltrdi z×0hopzHrmOp
10 9 adantl z×0hopzHrmOp
11 1 2 3 opsqrlem3 zHrmOpwHrmOpzSw=z+op12·opT-opzz
12 halfre 12
13 simpl zHrmOpwHrmOpzHrmOp
14 eqidd zHrmOpwHrmOpzz=zz
15 hmopco zHrmOpzHrmOpzz=zzzzHrmOp
16 13 13 14 15 syl3anc zHrmOpwHrmOpzzHrmOp
17 hmopd THrmOpzzHrmOpT-opzzHrmOp
18 1 16 17 sylancr zHrmOpwHrmOpT-opzzHrmOp
19 hmopm 12T-opzzHrmOp12·opT-opzzHrmOp
20 12 18 19 sylancr zHrmOpwHrmOp12·opT-opzzHrmOp
21 hmops zHrmOp12·opT-opzzHrmOpz+op12·opT-opzzHrmOp
22 20 21 syldan zHrmOpwHrmOpz+op12·opT-opzzHrmOp
23 11 22 eqeltrd zHrmOpwHrmOpzSwHrmOp
24 23 adantl zHrmOpwHrmOpzSwHrmOp
25 4 5 10 24 seqf seq1S×0hop:HrmOp
26 25 mptru seq1S×0hop:HrmOp
27 3 feq1i F:HrmOpseq1S×0hop:HrmOp
28 26 27 mpbir F:HrmOp