Metamath Proof Explorer


Theorem opsrval

Description: The value of the "ordered power series" function. This is the same as mPwSer psrval , but with the addition of a well-order on I we can turn a strict order on R into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrval.s S=ImPwSerR
opsrval.o O=IordPwSerRT
opsrval.b B=BaseS
opsrval.q <˙=<R
opsrval.c C=T<bagI
opsrval.d D=h0I|h-1Fin
opsrval.l ˙=xy|xyBzDxz<˙yzwDwCzxw=ywx=y
opsrval.i φIV
opsrval.r φRW
opsrval.t φTI×I
Assertion opsrval φO=SsSetndx˙

Proof

Step Hyp Ref Expression
1 opsrval.s S=ImPwSerR
2 opsrval.o O=IordPwSerRT
3 opsrval.b B=BaseS
4 opsrval.q <˙=<R
5 opsrval.c C=T<bagI
6 opsrval.d D=h0I|h-1Fin
7 opsrval.l ˙=xy|xyBzDxz<˙yzwDwCzxw=ywx=y
8 opsrval.i φIV
9 opsrval.r φRW
10 opsrval.t φTI×I
11 8 elexd φIV
12 9 elexd φRV
13 8 8 xpexd φI×IV
14 pwexg I×IV𝒫I×IV
15 mptexg 𝒫I×IVr𝒫I×ISsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=yV
16 13 14 15 3syl φr𝒫I×ISsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=yV
17 simpl i=Is=Ri=I
18 17 sqxpeqd i=Is=Ri×i=I×I
19 18 pweqd i=Is=R𝒫i×i=𝒫I×I
20 ovexd i=Is=RimPwSersV
21 id p=imPwSersp=imPwSers
22 oveq12 i=Is=RimPwSers=ImPwSerR
23 21 22 sylan9eqr i=Is=Rp=imPwSersp=ImPwSerR
24 23 1 eqtr4di i=Is=Rp=imPwSersp=S
25 24 fveq2d i=Is=Rp=imPwSersBasep=BaseS
26 25 3 eqtr4di i=Is=Rp=imPwSersBasep=B
27 26 sseq2d i=Is=Rp=imPwSersxyBasepxyB
28 ovex 0iV
29 28 rabex h0i|h-1FinV
30 29 a1i i=Is=Rp=imPwSersh0i|h-1FinV
31 17 adantr i=Is=Rp=imPwSersi=I
32 31 oveq2d i=Is=Rp=imPwSers0i=0I
33 rabeq 0i=0Ih0i|h-1Fin=h0I|h-1Fin
34 32 33 syl i=Is=Rp=imPwSersh0i|h-1Fin=h0I|h-1Fin
35 34 6 eqtr4di i=Is=Rp=imPwSersh0i|h-1Fin=D
36 simpr i=Is=Rp=imPwSersd=Dd=D
37 simpllr i=Is=Rp=imPwSersd=Ds=R
38 37 fveq2d i=Is=Rp=imPwSersd=D<s=<R
39 38 4 eqtr4di i=Is=Rp=imPwSersd=D<s=<˙
40 39 breqd i=Is=Rp=imPwSersd=Dxz<syzxz<˙yz
41 31 adantr i=Is=Rp=imPwSersd=Di=I
42 41 oveq2d i=Is=Rp=imPwSersd=Dr<bagi=r<bagI
43 42 breqd i=Is=Rp=imPwSersd=Dwr<bagizwr<bagIz
44 43 imbi1d i=Is=Rp=imPwSersd=Dwr<bagizxw=ywwr<bagIzxw=yw
45 36 44 raleqbidv i=Is=Rp=imPwSersd=Dwdwr<bagizxw=ywwDwr<bagIzxw=yw
46 40 45 anbi12d i=Is=Rp=imPwSersd=Dxz<syzwdwr<bagizxw=ywxz<˙yzwDwr<bagIzxw=yw
47 36 46 rexeqbidv i=Is=Rp=imPwSersd=Dzdxz<syzwdwr<bagizxw=ywzDxz<˙yzwDwr<bagIzxw=yw
48 30 35 47 sbcied2 i=Is=Rp=imPwSers[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywzDxz<˙yzwDwr<bagIzxw=yw
49 48 orbi1d i=Is=Rp=imPwSers[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=yzDxz<˙yzwDwr<bagIzxw=ywx=y
50 27 49 anbi12d i=Is=Rp=imPwSersxyBasep[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=yxyBzDxz<˙yzwDwr<bagIzxw=ywx=y
51 50 opabbidv i=Is=Rp=imPwSersxy|xyBasep[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=y=xy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y
52 51 opeq2d i=Is=Rp=imPwSersndxxy|xyBasep[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=y=ndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y
53 24 52 oveq12d i=Is=Rp=imPwSerspsSetndxxy|xyBasep[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=y=SsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y
54 20 53 csbied i=Is=RimPwSers/ppsSetndxxy|xyBasep[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=y=SsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y
55 19 54 mpteq12dv i=Is=Rr𝒫i×iimPwSers/ppsSetndxxy|xyBasep[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=y=r𝒫I×ISsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y
56 df-opsr ordPwSer=iV,sVr𝒫i×iimPwSers/ppsSetndxxy|xyBasep[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=y
57 55 56 ovmpoga IVRVr𝒫I×ISsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=yVIordPwSerR=r𝒫I×ISsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y
58 11 12 16 57 syl3anc φIordPwSerR=r𝒫I×ISsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y
59 simpr φr=Tr=T
60 59 oveq1d φr=Tr<bagI=T<bagI
61 60 5 eqtr4di φr=Tr<bagI=C
62 61 breqd φr=Twr<bagIzwCz
63 62 imbi1d φr=Twr<bagIzxw=ywwCzxw=yw
64 63 ralbidv φr=TwDwr<bagIzxw=ywwDwCzxw=yw
65 64 anbi2d φr=Txz<˙yzwDwr<bagIzxw=ywxz<˙yzwDwCzxw=yw
66 65 rexbidv φr=TzDxz<˙yzwDwr<bagIzxw=ywzDxz<˙yzwDwCzxw=yw
67 66 orbi1d φr=TzDxz<˙yzwDwr<bagIzxw=ywx=yzDxz<˙yzwDwCzxw=ywx=y
68 67 anbi2d φr=TxyBzDxz<˙yzwDwr<bagIzxw=ywx=yxyBzDxz<˙yzwDwCzxw=ywx=y
69 68 opabbidv φr=Txy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y=xy|xyBzDxz<˙yzwDwCzxw=ywx=y
70 69 7 eqtr4di φr=Txy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y=˙
71 70 opeq2d φr=Tndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y=ndx˙
72 71 oveq2d φr=TSsSetndxxy|xyBzDxz<˙yzwDwr<bagIzxw=ywx=y=SsSetndx˙
73 13 10 sselpwd φT𝒫I×I
74 ovexd φSsSetndx˙V
75 58 72 73 74 fvmptd φIordPwSerRT=SsSetndx˙
76 2 75 eqtrid φO=SsSetndx˙