| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsrval.s |
|
| 2 |
|
opsrval.o |
|
| 3 |
|
opsrval.b |
|
| 4 |
|
opsrval.q |
|
| 5 |
|
opsrval.c |
|
| 6 |
|
opsrval.d |
|
| 7 |
|
opsrval.l |
|
| 8 |
|
opsrval.i |
|
| 9 |
|
opsrval.r |
|
| 10 |
|
opsrval.t |
|
| 11 |
8
|
elexd |
|
| 12 |
9
|
elexd |
|
| 13 |
8 8
|
xpexd |
|
| 14 |
|
pwexg |
|
| 15 |
|
mptexg |
|
| 16 |
13 14 15
|
3syl |
|
| 17 |
|
simpl |
|
| 18 |
17
|
sqxpeqd |
|
| 19 |
18
|
pweqd |
|
| 20 |
|
ovexd |
|
| 21 |
|
id |
|
| 22 |
|
oveq12 |
|
| 23 |
21 22
|
sylan9eqr |
|
| 24 |
23 1
|
eqtr4di |
|
| 25 |
24
|
fveq2d |
|
| 26 |
25 3
|
eqtr4di |
|
| 27 |
26
|
sseq2d |
|
| 28 |
|
ovex |
|
| 29 |
28
|
rabex |
|
| 30 |
29
|
a1i |
|
| 31 |
17
|
adantr |
|
| 32 |
31
|
oveq2d |
|
| 33 |
|
rabeq |
|
| 34 |
32 33
|
syl |
|
| 35 |
34 6
|
eqtr4di |
|
| 36 |
|
simpr |
|
| 37 |
|
simpllr |
|
| 38 |
37
|
fveq2d |
|
| 39 |
38 4
|
eqtr4di |
|
| 40 |
39
|
breqd |
|
| 41 |
31
|
adantr |
|
| 42 |
41
|
oveq2d |
|
| 43 |
42
|
breqd |
|
| 44 |
43
|
imbi1d |
|
| 45 |
36 44
|
raleqbidv |
|
| 46 |
40 45
|
anbi12d |
|
| 47 |
36 46
|
rexeqbidv |
|
| 48 |
30 35 47
|
sbcied2 |
|
| 49 |
48
|
orbi1d |
|
| 50 |
27 49
|
anbi12d |
|
| 51 |
50
|
opabbidv |
|
| 52 |
51
|
opeq2d |
|
| 53 |
24 52
|
oveq12d |
|
| 54 |
20 53
|
csbied |
|
| 55 |
19 54
|
mpteq12dv |
|
| 56 |
|
df-opsr |
|
| 57 |
55 56
|
ovmpoga |
|
| 58 |
11 12 16 57
|
syl3anc |
|
| 59 |
|
simpr |
|
| 60 |
59
|
oveq1d |
|
| 61 |
60 5
|
eqtr4di |
|
| 62 |
61
|
breqd |
|
| 63 |
62
|
imbi1d |
|
| 64 |
63
|
ralbidv |
|
| 65 |
64
|
anbi2d |
|
| 66 |
65
|
rexbidv |
|
| 67 |
66
|
orbi1d |
|
| 68 |
67
|
anbi2d |
|
| 69 |
68
|
opabbidv |
|
| 70 |
69 7
|
eqtr4di |
|
| 71 |
70
|
opeq2d |
|
| 72 |
71
|
oveq2d |
|
| 73 |
13 10
|
sselpwd |
|
| 74 |
|
ovexd |
|
| 75 |
58 72 73 74
|
fvmptd |
|
| 76 |
2 75
|
eqtrid |
|