Description: Lemma for ordtype . Using ax-rep , exclude the possibility that O is a proper class and does not enumerate all of A . (Contributed by Mario Carneiro, 25-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ordtypelem.1 | |
|
ordtypelem.2 | |
||
ordtypelem.3 | |
||
ordtypelem.5 | |
||
ordtypelem.6 | |
||
ordtypelem.7 | |
||
ordtypelem.8 | |
||
Assertion | ordtypelem10 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtypelem.1 | |
|
2 | ordtypelem.2 | |
|
3 | ordtypelem.3 | |
|
4 | ordtypelem.5 | |
|
5 | ordtypelem.6 | |
|
6 | ordtypelem.7 | |
|
7 | ordtypelem.8 | |
|
8 | 1 2 3 4 5 6 7 | ordtypelem8 | |
9 | 1 2 3 4 5 6 7 | ordtypelem4 | |
10 | 9 | frnd | |
11 | simprl | |
|
12 | 6 | adantr | |
13 | 7 | adantr | |
14 | 9 | ffund | |
15 | 14 | funfnd | |
16 | 15 | adantr | |
17 | 1 2 3 4 5 12 13 | ordtypelem8 | |
18 | isof1o | |
|
19 | f1of1 | |
|
20 | 17 18 19 | 3syl | |
21 | simpl | |
|
22 | seex | |
|
23 | 7 21 22 | syl2an | |
24 | 10 | adantr | |
25 | rexnal | |
|
26 | 1 2 3 4 5 6 7 | ordtypelem7 | |
27 | 26 | ord | |
28 | 27 | rexlimdva | |
29 | 25 28 | biimtrrid | |
30 | 29 | con1d | |
31 | 30 | impr | |
32 | breq1 | |
|
33 | 32 | ralrn | |
34 | 16 33 | syl | |
35 | 31 34 | mpbird | |
36 | ssrab | |
|
37 | 24 35 36 | sylanbrc | |
38 | 23 37 | ssexd | |
39 | f1dmex | |
|
40 | 20 38 39 | syl2anc | |
41 | 16 40 | fnexd | |
42 | 1 2 3 4 5 12 13 41 | ordtypelem9 | |
43 | isof1o | |
|
44 | f1ofo | |
|
45 | forn | |
|
46 | 42 43 44 45 | 4syl | |
47 | 11 46 | eleqtrrd | |
48 | 47 | expr | |
49 | 48 | pm2.18d | |
50 | 10 49 | eqelssd | |
51 | isoeq5 | |
|
52 | 50 51 | syl | |
53 | 8 52 | mpbid | |