Metamath Proof Explorer


Theorem ordtypelem10

Description: Lemma for ordtype . Using ax-rep , exclude the possibility that O is a proper class and does not enumerate all of A . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F=recsG
ordtypelem.2 C=wA|jranhjRw
ordtypelem.3 G=hVιvC|uC¬uRv
ordtypelem.5 T=xOn|tAzFxzRt
ordtypelem.6 O=OrdIsoRA
ordtypelem.7 φRWeA
ordtypelem.8 φRSeA
Assertion ordtypelem10 φOIsomE,RdomOA

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F=recsG
2 ordtypelem.2 C=wA|jranhjRw
3 ordtypelem.3 G=hVιvC|uC¬uRv
4 ordtypelem.5 T=xOn|tAzFxzRt
5 ordtypelem.6 O=OrdIsoRA
6 ordtypelem.7 φRWeA
7 ordtypelem.8 φRSeA
8 1 2 3 4 5 6 7 ordtypelem8 φOIsomE,RdomOranO
9 1 2 3 4 5 6 7 ordtypelem4 φO:TdomFA
10 9 frnd φranOA
11 simprl φbA¬branObA
12 6 adantr φbA¬branORWeA
13 7 adantr φbA¬branORSeA
14 9 ffund φFunO
15 14 funfnd φOFndomO
16 15 adantr φbA¬branOOFndomO
17 1 2 3 4 5 12 13 ordtypelem8 φbA¬branOOIsomE,RdomOranO
18 isof1o OIsomE,RdomOranOO:domO1-1 ontoranO
19 f1of1 O:domO1-1 ontoranOO:domO1-1ranO
20 17 18 19 3syl φbA¬branOO:domO1-1ranO
21 simpl bA¬branObA
22 seex RSeAbAcA|cRbV
23 7 21 22 syl2an φbA¬branOcA|cRbV
24 10 adantr φbA¬branOranOA
25 rexnal mdomO¬OmRb¬mdomOOmRb
26 1 2 3 4 5 6 7 ordtypelem7 φbAmdomOOmRbbranO
27 26 ord φbAmdomO¬OmRbbranO
28 27 rexlimdva φbAmdomO¬OmRbbranO
29 25 28 biimtrrid φbA¬mdomOOmRbbranO
30 29 con1d φbA¬branOmdomOOmRb
31 30 impr φbA¬branOmdomOOmRb
32 breq1 c=OmcRbOmRb
33 32 ralrn OFndomOcranOcRbmdomOOmRb
34 16 33 syl φbA¬branOcranOcRbmdomOOmRb
35 31 34 mpbird φbA¬branOcranOcRb
36 ssrab ranOcA|cRbranOAcranOcRb
37 24 35 36 sylanbrc φbA¬branOranOcA|cRb
38 23 37 ssexd φbA¬branOranOV
39 f1dmex O:domO1-1ranOranOVdomOV
40 20 38 39 syl2anc φbA¬branOdomOV
41 16 40 fnexd φbA¬branOOV
42 1 2 3 4 5 12 13 41 ordtypelem9 φbA¬branOOIsomE,RdomOA
43 isof1o OIsomE,RdomOAO:domO1-1 ontoA
44 f1ofo O:domO1-1 ontoAO:domOontoA
45 forn O:domOontoAranO=A
46 42 43 44 45 4syl φbA¬branOranO=A
47 11 46 eleqtrrd φbA¬branObranO
48 47 expr φbA¬branObranO
49 48 pm2.18d φbAbranO
50 10 49 eqelssd φranO=A
51 isoeq5 ranO=AOIsomE,RdomOranOOIsomE,RdomOA
52 50 51 syl φOIsomE,RdomOranOOIsomE,RdomOA
53 8 52 mpbid φOIsomE,RdomOA