Metamath Proof Explorer


Theorem ovnval

Description: Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovnval.1 φ X Fin
Assertion ovnval φ voln* X = y 𝒫 X if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * <

Proof

Step Hyp Ref Expression
1 ovnval.1 φ X Fin
2 df-ovoln voln* = x Fin y 𝒫 x if x = 0 sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * <
3 oveq2 x = X x = X
4 3 pweqd x = X 𝒫 x = 𝒫 X
5 eqeq1 x = X x = X =
6 oveq2 x = X 2 x = 2 X
7 6 oveq1d x = X 2 x = 2 X
8 ixpeq1 x = X k x . i j k = k X . i j k
9 8 iuneq2d x = X j k x . i j k = j k X . i j k
10 9 sseq2d x = X y j k x . i j k y j k X . i j k
11 simpl x = X j x = X
12 11 prodeq1d x = X j k x vol . i j k = k X vol . i j k
13 12 mpteq2dva x = X j k x vol . i j k = j k X vol . i j k
14 13 fveq2d x = X sum^ j k x vol . i j k = sum^ j k X vol . i j k
15 14 eqeq2d x = X z = sum^ j k x vol . i j k z = sum^ j k X vol . i j k
16 10 15 anbi12d x = X y j k x . i j k z = sum^ j k x vol . i j k y j k X . i j k z = sum^ j k X vol . i j k
17 7 16 rexeqbidv x = X i 2 x y j k x . i j k z = sum^ j k x vol . i j k i 2 X y j k X . i j k z = sum^ j k X vol . i j k
18 17 rabbidv x = X z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k = z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k
19 18 infeq1d x = X sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * < = sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * <
20 5 19 ifbieq2d x = X if x = 0 sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * < = if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * <
21 4 20 mpteq12dv x = X y 𝒫 x if x = 0 sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * < = y 𝒫 X if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * <
22 ovex X V
23 22 pwex 𝒫 X V
24 23 mptex y 𝒫 X if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * < V
25 24 a1i φ y 𝒫 X if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * < V
26 2 21 1 25 fvmptd3 φ voln* X = y 𝒫 X if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * <