Metamath Proof Explorer


Theorem ovolficcss

Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Assertion ovolficcss F:2ran.F

Proof

Step Hyp Ref Expression
1 rnco2 ran.F=.ranF
2 ffvelcdm F:2yFy2
3 2 elin2d F:2yFy2
4 1st2nd2 Fy2Fy=1stFy2ndFy
5 3 4 syl F:2yFy=1stFy2ndFy
6 5 fveq2d F:2y.Fy=.1stFy2ndFy
7 df-ov 1stFy2ndFy=.1stFy2ndFy
8 6 7 eqtr4di F:2y.Fy=1stFy2ndFy
9 xp1st Fy21stFy
10 3 9 syl F:2y1stFy
11 xp2nd Fy22ndFy
12 3 11 syl F:2y2ndFy
13 iccssre 1stFy2ndFy1stFy2ndFy
14 10 12 13 syl2anc F:2y1stFy2ndFy
15 8 14 eqsstrd F:2y.Fy
16 reex V
17 16 elpw2 .Fy𝒫.Fy
18 15 17 sylibr F:2y.Fy𝒫
19 18 ralrimiva F:2y.Fy𝒫
20 ffn F:2FFn
21 fveq2 x=Fy.x=.Fy
22 21 eleq1d x=Fy.x𝒫.Fy𝒫
23 22 ralrn FFnxranF.x𝒫y.Fy𝒫
24 20 23 syl F:2xranF.x𝒫y.Fy𝒫
25 19 24 mpbird F:2xranF.x𝒫
26 iccf .:*×*𝒫*
27 ffun .:*×*𝒫*Fun.
28 26 27 ax-mp Fun.
29 frn F:2ranF2
30 inss2 22
31 rexpssxrxp 2*×*
32 30 31 sstri 2*×*
33 26 fdmi dom.=*×*
34 32 33 sseqtrri 2dom.
35 29 34 sstrdi F:2ranFdom.
36 funimass4 Fun.ranFdom..ranF𝒫xranF.x𝒫
37 28 35 36 sylancr F:2.ranF𝒫xranF.x𝒫
38 25 37 mpbird F:2.ranF𝒫
39 1 38 eqsstrid F:2ran.F𝒫
40 sspwuni ran.F𝒫ran.F
41 39 40 sylib F:2ran.F