Metamath Proof Explorer


Theorem ovoliun

Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +oo as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss , so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovoliun.t T = seq 1 + G
ovoliun.g G = n vol * A
ovoliun.a φ n A
ovoliun.v φ n vol * A
Assertion ovoliun φ vol * n A sup ran T * <

Proof

Step Hyp Ref Expression
1 ovoliun.t T = seq 1 + G
2 ovoliun.g G = n vol * A
3 ovoliun.a φ n A
4 ovoliun.v φ n vol * A
5 mnfxr −∞ *
6 5 a1i φ −∞ *
7 nnuz = 1
8 1zzd φ 1
9 4 2 fmptd φ G :
10 9 ffvelrnda φ k G k
11 7 8 10 serfre φ seq 1 + G :
12 1 feq1i T : seq 1 + G :
13 11 12 sylibr φ T :
14 1nn 1
15 ffvelrn T : 1 T 1
16 13 14 15 sylancl φ T 1
17 16 rexrd φ T 1 *
18 13 frnd φ ran T
19 ressxr *
20 18 19 sstrdi φ ran T *
21 supxrcl ran T * sup ran T * < *
22 20 21 syl φ sup ran T * < *
23 16 mnfltd φ −∞ < T 1
24 13 ffnd φ T Fn
25 fnfvelrn T Fn 1 T 1 ran T
26 24 14 25 sylancl φ T 1 ran T
27 supxrub ran T * T 1 ran T T 1 sup ran T * <
28 20 26 27 syl2anc φ T 1 sup ran T * <
29 6 17 22 23 28 xrltletrd φ −∞ < sup ran T * <
30 xrrebnd sup ran T * < * sup ran T * < −∞ < sup ran T * < sup ran T * < < +∞
31 22 30 syl φ sup ran T * < −∞ < sup ran T * < sup ran T * < < +∞
32 29 31 mpbirand φ sup ran T * < sup ran T * < < +∞
33 nfcv _ m A
34 nfcsb1v _ n m / n A
35 csbeq1a n = m A = m / n A
36 33 34 35 cbviun n A = m m / n A
37 36 fveq2i vol * n A = vol * m m / n A
38 nfcv _ m vol * A
39 nfcv _ n vol *
40 39 34 nffv _ n vol * m / n A
41 35 fveq2d n = m vol * A = vol * m / n A
42 38 40 41 cbvmpt n vol * A = m vol * m / n A
43 2 42 eqtri G = m vol * m / n A
44 3 ralrimiva φ n A
45 nfv m A
46 nfcv _ n
47 34 46 nfss n m / n A
48 35 sseq1d n = m A m / n A
49 45 47 48 cbvralw n A m m / n A
50 44 49 sylib φ m m / n A
51 50 ad2antrr φ sup ran T * < x + m m / n A
52 51 r19.21bi φ sup ran T * < x + m m / n A
53 4 ralrimiva φ n vol * A
54 38 nfel1 m vol * A
55 40 nfel1 n vol * m / n A
56 41 eleq1d n = m vol * A vol * m / n A
57 54 55 56 cbvralw n vol * A m vol * m / n A
58 53 57 sylib φ m vol * m / n A
59 58 ad2antrr φ sup ran T * < x + m vol * m / n A
60 59 r19.21bi φ sup ran T * < x + m vol * m / n A
61 simplr φ sup ran T * < x + sup ran T * <
62 simpr φ sup ran T * < x + x +
63 1 43 52 60 61 62 ovoliunlem3 φ sup ran T * < x + vol * m m / n A sup ran T * < + x
64 37 63 eqbrtrid φ sup ran T * < x + vol * n A sup ran T * < + x
65 64 ralrimiva φ sup ran T * < x + vol * n A sup ran T * < + x
66 iunss n A n A
67 44 66 sylibr φ n A
68 ovolcl n A vol * n A *
69 67 68 syl φ vol * n A *
70 xralrple vol * n A * sup ran T * < vol * n A sup ran T * < x + vol * n A sup ran T * < + x
71 69 70 sylan φ sup ran T * < vol * n A sup ran T * < x + vol * n A sup ran T * < + x
72 65 71 mpbird φ sup ran T * < vol * n A sup ran T * <
73 72 ex φ sup ran T * < vol * n A sup ran T * <
74 32 73 sylbird φ sup ran T * < < +∞ vol * n A sup ran T * <
75 nltpnft sup ran T * < * sup ran T * < = +∞ ¬ sup ran T * < < +∞
76 22 75 syl φ sup ran T * < = +∞ ¬ sup ran T * < < +∞
77 pnfge vol * n A * vol * n A +∞
78 69 77 syl φ vol * n A +∞
79 breq2 sup ran T * < = +∞ vol * n A sup ran T * < vol * n A +∞
80 78 79 syl5ibrcom φ sup ran T * < = +∞ vol * n A sup ran T * <
81 76 80 sylbird φ ¬ sup ran T * < < +∞ vol * n A sup ran T * <
82 74 81 pm2.61d φ vol * n A sup ran T * <